© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a314
K11a314
K11a316
K11a316
K11a315
Knotscape
This page is passe. Go here instead!

   The Knot K11a315

Visit K11a315's page at Knotilus!

Acknowledgement

K11a315 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X16,5,17,6 X18,8,19,7 X22,10,1,9 X4,12,5,11 X20,13,21,14 X10,15,11,16 X2,17,3,18 X8,20,9,19 X14,21,15,22

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -2, 7, -11, 8, -3, 9, -4, 10, -7, 11, -5}

DT (Dowker-Thistlethwaite) Code: 6 12 16 18 22 4 20 10 2 8 14

Alexander Polynomial: t-4 - 6t-3 + 18t-2 - 33t-1 + 41 - 33t + 18t2 - 6t3 + t4

Conway Polynomial: 1 + z2 + 2z4 + 2z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a24, K11a26, ...}

Determinant and Signature: {157, 0}

Jones Polynomial: - q-5 + 4q-4 - 10q-3 + 17q-2 - 22q-1 + 26 - 25q + 22q2 - 16q3 + 9q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a24, K11a26, ...}

A2 (sl(3)) Invariant: - q-14 + 2q-12 - 4q-10 + 2q-8 + q-6 - 3q-4 + 7q-2 - 3 + 5q2 - q4 - 2q6 + 3q8 - 5q10 + 2q12 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 4a-2 - 9a-2z2 - 7a-2z4 - 2a-2z6 + 6 + 12z2 + 11z4 + 5z6 + z8 - 2a2 - 4a2z2 - 3a2z4 - a2z6

Kauffman Polynomial: a-6z2 - 2a-6z4 + a-6z6 - a-5z + 6a-5z3 - 9a-5z5 + 4a-5z7 + a-4 - 3a-4z2 + 8a-4z4 - 14a-4z6 + 7a-4z8 - 3a-3z + 8a-3z3 - 6a-3z5 - 8a-3z7 + 7a-3z9 + 4a-2 - 19a-2z2 + 39a-2z4 - 41a-2z6 + 12a-2z8 + 3a-2z10 - 4a-1z + 3a-1z3 + 15a-1z5 - 32a-1z7 + 17a-1z9 + 6 - 26z2 + 56z4 - 55z6 + 18z8 + 3z10 - 4az + 9az3 - 2az5 - 11az7 + 10az9 + 2a2 - 11a2z2 + 23a2z4 - 25a2z6 + 13a2z8 - 2a3z + 7a3z3 - 13a3z5 + 9a3z7 - 4a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11315. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         61 
j = 7        103  
j = 5       126   
j = 3      1310    
j = 1     1312     
j = -1    1014      
j = -3   712       
j = -5  310        
j = -7 17         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 315]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 315]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[16, 5, 17, 6], X[18, 8, 19, 7], 
 
>   X[22, 10, 1, 9], X[4, 12, 5, 11], X[20, 13, 21, 14], X[10, 15, 11, 16], 
 
>   X[2, 17, 3, 18], X[8, 20, 9, 19], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 315]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -2, 7, -11, 8, -3, 9, -4, 10, 
 
>   -7, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 315]]
Out[5]=   
DTCode[6, 12, 16, 18, 22, 4, 20, 10, 2, 8, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 315]][t]
Out[6]=   
      -4   6    18   33              2      3    4
41 + t   - -- + -- - -- - 33 t + 18 t  - 6 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 315]][z]
Out[7]=   
     2      4      6    8
1 + z  + 2 z  + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 24], Knot[11, Alternating, 26], 
 
>   Knot[11, Alternating, 315]}
In[9]:=
{KnotDet[Knot[11, Alternating, 315]], KnotSignature[Knot[11, Alternating, 315]]}
Out[9]=   
{157, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 315]][q]
Out[10]=   
      -5   4    10   17   22              2       3      4      5    6
26 - q   + -- - -- + -- - -- - 25 q + 22 q  - 16 q  + 9 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 24], Knot[11, Alternating, 26], 
 
>   Knot[11, Alternating, 315]}
In[12]:=
A2Invariant[Knot[11, Alternating, 315]][q]
Out[12]=   
      -14    2     4    2     -6   3    7       2    4      6      8      10
-3 - q    + --- - --- + -- + q   - -- + -- + 5 q  - q  - 2 q  + 3 q  - 5 q   + 
             12    10    8          4    2
            q     q     q          q    q
 
       12    16    18
>   2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 315]][a, z]
Out[13]=   
                                 2      2                      4      4
     -4   4       2       2   2 z    9 z       2  2       4   z    7 z
6 + a   - -- - 2 a  + 12 z  + ---- - ---- - 4 a  z  + 11 z  + -- - ---- - 
           2                    4      2                       4     2
          a                    a      a                       a     a
 
                        6
       2  4      6   2 z     2  6    8
>   3 a  z  + 5 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 315]][a, z]
Out[14]=   
                                                                 2      2
     -4   4       2   z    3 z   4 z              3         2   z    3 z
6 + a   + -- + 2 a  - -- - --- - --- - 4 a z - 2 a  z - 26 z  + -- - ---- - 
           2           5    3     a                              6     4
          a           a    a                                    a     a
 
        2                 3      3      3
    19 z        2  2   6 z    8 z    3 z         3      3  3    5  3       4
>   ----- - 11 a  z  + ---- + ---- + ---- + 9 a z  + 7 a  z  - a  z  + 56 z  - 
      2                  5      3     a
     a                  a      a
 
       4      4       4                           5      5       5
    2 z    8 z    39 z        2  4      4  4   9 z    6 z    15 z         5
>   ---- + ---- + ----- + 23 a  z  - 4 a  z  - ---- - ---- + ----- - 2 a z  - 
      6      4      2                            5      3      a
     a      a      a                            a      a
 
                                6       6       6                           7
        3  5    5  5       6   z    14 z    41 z        2  6      4  6   4 z
>   13 a  z  + a  z  - 55 z  + -- - ----- - ----- - 25 a  z  + 4 a  z  + ---- - 
                                6     4       2                            5
                               a     a       a                            a
 
       7       7                                  8       8                 9
    8 z    32 z          7      3  7       8   7 z    12 z        2  8   7 z
>   ---- - ----- - 11 a z  + 9 a  z  + 18 z  + ---- + ----- + 13 a  z  + ---- + 
      3      a                                   4      2                  3
     a                                          a      a                  a
 
        9                        10
    17 z          9      10   3 z
>   ----- + 10 a z  + 3 z   + -----
      a                         2
                               a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 315]], Vassiliev[3][Knot[11, Alternating, 315]]}
Out[15]=   
{1, -1}
In[16]:=
Kh[Knot[11, Alternating, 315]][q, t]
Out[16]=   
14            1        3       1       7       3      10       7      12
-- + 13 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    10                 3         3  2       5  2      5  3       7  3
>   --- + 12 q t + 13 q  t + 10 q  t  + 12 q  t  + 6 q  t  + 10 q  t  + 
    q t
 
       7  4      9  4    9  5      11  5    13  6
>   3 q  t  + 6 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a315
K11a314
K11a314
K11a316
K11a316