© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a313
K11a313
K11a315
K11a315
K11a314
Knotscape
This page is passe. Go here instead!

   The Knot K11a314

Visit K11a314's page at Knotilus!

Acknowledgement

K11a314 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X16,5,17,6 X18,8,19,7 X14,10,15,9 X4,12,5,11 X20,13,21,14 X22,16,1,15 X2,17,3,18 X8,20,9,19 X10,21,11,22

Gauss Code: {1, -9, 2, -6, 3, -1, 4, -10, 5, -11, 6, -2, 7, -5, 8, -3, 9, -4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 12 16 18 14 4 20 22 2 8 10

Alexander Polynomial: - t-4 + 7t-3 - 21t-2 + 36t-1 - 41 + 36t - 21t2 + 7t3 - t4

Conway Polynomial: 1 - z2 + z4 - z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {171, 2}

Jones Polynomial: q-3 - 5q-2 + 12q-1 - 18 + 25q - 28q2 + 27q3 - 24q4 + 17q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - 3q-6 + 4q-4 - q-2 + 1 + 5q2 - 6q4 + 5q6 - 5q8 + q10 + q12 - 4q14 + 5q16 - 2q18 + q20 + q22 - q24

HOMFLY-PT Polynomial: - 2a-6z2 - a-6z4 + a-4 + 5a-4z2 + 6a-4z4 + 2a-4z6 - 2a-2 - 5a-2z2 - 6a-2z4 - 4a-2z6 - a-2z8 + 2 + z2 + 2z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + 2a-8z2 - 5a-8z4 + 4a-8z6 - a-7z + 5a-7z3 - 10a-7z5 + 8a-7z7 + a-6z2 + 6a-6z4 - 14a-6z6 + 11a-6z8 - 4a-5z + 8a-5z3 - 3a-5z5 - 9a-5z7 + 10a-5z9 + a-4 - 8a-4z2 + 34a-4z4 - 44a-4z6 + 15a-4z8 + 4a-4z10 - 4a-3z + 21a-3z5 - 41a-3z7 + 21a-3z9 + 2a-2 - 10a-2z2 + 38a-2z4 - 51a-2z6 + 15a-2z8 + 4a-2z10 - a-1z + 5a-1z5 - 19a-1z7 + 11a-1z9 + 2 - 3z2 + 14z4 - 24z6 + 11z8 + 2az3 - 8az5 + 5az7 - a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11314. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        113  
j = 9       136   
j = 7      1411    
j = 5     1413     
j = 3    1114      
j = 1   815       
j = -1  410        
j = -3 18         
j = -5 4          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 314]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 314]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[16, 5, 17, 6], X[18, 8, 19, 7], 
 
>   X[14, 10, 15, 9], X[4, 12, 5, 11], X[20, 13, 21, 14], X[22, 16, 1, 15], 
 
>   X[2, 17, 3, 18], X[8, 20, 9, 19], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 314]]
Out[4]=   
GaussCode[1, -9, 2, -6, 3, -1, 4, -10, 5, -11, 6, -2, 7, -5, 8, -3, 9, -4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 314]]
Out[5]=   
DTCode[6, 12, 16, 18, 14, 4, 20, 22, 2, 8, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 314]][t]
Out[6]=   
       -4   7    21   36              2      3    4
-41 - t   + -- - -- + -- + 36 t - 21 t  + 7 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 314]][z]
Out[7]=   
     2    4    6    8
1 - z  + z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 314]}
In[9]:=
{KnotDet[Knot[11, Alternating, 314]], KnotSignature[Knot[11, Alternating, 314]]}
Out[9]=   
{171, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 314]][q]
Out[10]=   
       -3   5    12              2       3       4       5      6      7    8
-18 + q   - -- + -- + 25 q - 28 q  + 27 q  - 24 q  + 17 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 314]}
In[12]:=
A2Invariant[Knot[11, Alternating, 314]][q]
Out[12]=   
     -8   3    4     -2      2      4      6      8    10    12      14
1 + q   - -- + -- - q   + 5 q  - 6 q  + 5 q  - 5 q  + q   + q   - 4 q   + 
           6    4
          q    q
 
       16      18    20    22    24
>   5 q   - 2 q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 314]][a, z]
Out[13]=   
                       2      2      2           4      4      4           6
     -4   2     2   2 z    5 z    5 z       4   z    6 z    6 z     6   2 z
2 + a   - -- + z  - ---- + ---- - ---- + 2 z  - -- + ---- - ---- + z  + ---- - 
           2          6      4      2            6     4      2           4
          a          a      a      a            a     a      a           a
 
       6    8
    4 z    z
>   ---- - --
      2     2
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 314]][a, z]
Out[14]=   
                                              2    2      2       2    3
     -4   2    z    4 z   4 z   z      2   2 z    z    8 z    10 z    z
2 + a   + -- - -- - --- - --- - - - 3 z  + ---- + -- - ---- - ----- - -- + 
           2    7    5     3    a            8     6     4      2      9
          a    a    a     a                 a     a     a      a      a
 
       3      3                       4      4       4       4            5
    5 z    8 z         3       4   5 z    6 z    34 z    38 z     2  4   z
>   ---- + ---- + 2 a z  + 14 z  - ---- + ---- + ----- + ----- - a  z  + -- - 
      7      5                       8      6      4       2              9
     a      a                       a      a      a       a              a
 
        5      5       5      5                       6       6       6
    10 z    3 z    21 z    5 z         5       6   4 z    14 z    44 z
>   ----- - ---- + ----- + ---- - 8 a z  - 24 z  + ---- - ----- - ----- - 
      7       5      3      a                        8      6       4
     a       a      a                               a      a       a
 
        6              7      7       7       7                        8
    51 z     2  6   8 z    9 z    41 z    19 z         7       8   11 z
>   ----- + a  z  + ---- - ---- - ----- - ----- + 5 a z  + 11 z  + ----- + 
      2               7      5      3       a                        6
     a               a      a      a                                a
 
        8       8       9       9       9      10      10
    15 z    15 z    10 z    21 z    11 z    4 z     4 z
>   ----- + ----- + ----- + ----- + ----- + ----- + -----
      4       2       5       3       a       4       2
     a       a       a       a               a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 314]], Vassiliev[3][Knot[11, Alternating, 314]]}
Out[15]=   
{-1, -1}
In[16]:=
Kh[Knot[11, Alternating, 314]][q, t]
Out[16]=   
           3     1       4       1       8      4     10    8 q       3
15 q + 11 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 14 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2       7  3       9  3      9  4       11  4
>   14 q  t + 13 q  t  + 14 q  t  + 11 q  t  + 13 q  t  + 6 q  t  + 11 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a314
K11a313
K11a313
K11a315
K11a315