© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a312
K11a312
K11a314
K11a314
K11a313
Knotscape
This page is passe. Go here instead!

   The Knot K11a313

Visit K11a313's page at Knotilus!

Acknowledgement

K11a313 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,3,13,4 X16,5,17,6 X14,8,15,7 X20,9,21,10 X18,11,19,12 X2,13,3,14 X22,16,1,15 X4,17,5,18 X10,19,11,20 X8,21,9,22

Gauss Code: {1, -7, 2, -9, 3, -1, 4, -11, 5, -10, 6, -2, 7, -4, 8, -3, 9, -6, 10, -5, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 12 16 14 20 18 2 22 4 10 8

Alexander Polynomial: 5t-2 - 19t-1 + 29 - 19t + 5t2

Conway Polynomial: 1 + z2 + 5z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {77, 0}

Jones Polynomial: q-8 - 3q-7 + 5q-6 - 8q-5 + 10q-4 - 11q-3 + 12q-2 - 10q-1 + 8 - 5q + 3q2 - q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-26 + q-24 - 2q-22 - q-18 - 3q-16 + 2q-14 + q-10 + 2q-8 + 2q-4 - q-2 + 2q2 - 2q4 + q6 + q8 - q10

HOMFLY-PT Polynomial: - a-2z2 + z4 + a2 + 2a2z2 + 2a2z4 + 2a4 + 3a4z2 + 2a4z4 - 3a6 - 3a6z2 + a8

Kauffman Polynomial: a-3z3 - a-2z2 + 3a-2z4 - 3a-1z3 + 5a-1z5 + 2z2 - 9z4 + 7z6 + 4az3 - 15az5 + 8az7 - a2 - 2a2z2 + 12a2z4 - 21a2z6 + 8a2z8 + 3a3z - 5a3z3 + 12a3z5 - 18a3z7 + 6a3z9 + 2a4 - 19a4z2 + 47a4z4 - 33a4z6 + 2a4z8 + 2a4z10 + 5a5z - 29a5z3 + 59a5z5 - 42a5z7 + 9a5z9 + 3a6 - 19a6z2 + 31a6z4 - 10a6z6 - 5a6z8 + 2a6z10 + 2a7z - 16a7z3 + 27a7z5 - 16a7z7 + 3a7z9 + a8 - 5a8z2 + 8a8z4 - 5a8z6 + a8z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11313. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 7           1
j = 5          2 
j = 3         31 
j = 1        52  
j = -1       64   
j = -3      64    
j = -5     56     
j = -7    56      
j = -9   35       
j = -11  25        
j = -13 13         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 313]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 313]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 3, 13, 4], X[16, 5, 17, 6], X[14, 8, 15, 7], 
 
>   X[20, 9, 21, 10], X[18, 11, 19, 12], X[2, 13, 3, 14], X[22, 16, 1, 15], 
 
>   X[4, 17, 5, 18], X[10, 19, 11, 20], X[8, 21, 9, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 313]]
Out[4]=   
GaussCode[1, -7, 2, -9, 3, -1, 4, -11, 5, -10, 6, -2, 7, -4, 8, -3, 9, -6, 10, 
 
>   -5, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 313]]
Out[5]=   
DTCode[6, 12, 16, 14, 20, 18, 2, 22, 4, 10, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 313]][t]
Out[6]=   
     5    19             2
29 + -- - -- - 19 t + 5 t
      2   t
     t
In[7]:=
Conway[Knot[11, Alternating, 313]][z]
Out[7]=   
     2      4
1 + z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 313]}
In[9]:=
{KnotDet[Knot[11, Alternating, 313]], KnotSignature[Knot[11, Alternating, 313]]}
Out[9]=   
{77, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 313]][q]
Out[10]=   
     -8   3    5    8    10   11   12   10            2    3
8 + q   - -- + -- - -- + -- - -- + -- - -- - 5 q + 3 q  - q
           7    6    5    4    3    2   q
          q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 313]}
In[12]:=
A2Invariant[Knot[11, Alternating, 313]][q]
Out[12]=   
 -26    -24    2     -18    3     2     -10   2    2     -2      2      4
q    + q    - --- - q    - --- + --- + q    + -- + -- - q   + 2 q  - 2 q  + 
               22           16    14           8    4
              q            q     q            q    q
 
     6    8    10
>   q  + q  - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 313]][a, z]
Out[13]=   
                         2
 2      4      6    8   z       2  2      4  2      6  2    4      2  4
a  + 2 a  - 3 a  + a  - -- + 2 a  z  + 3 a  z  - 3 a  z  + z  + 2 a  z  + 
                         2
                        a
 
       4  4
>   2 a  z
In[14]:=
Kauffman[Knot[11, Alternating, 313]][a, z]
Out[14]=   
                                                            2
  2      4      6    8      3        5        7        2   z       2  2
-a  + 2 a  + 3 a  + a  + 3 a  z + 5 a  z + 2 a  z + 2 z  - -- - 2 a  z  - 
                                                            2
                                                           a
 
                                     3      3
        4  2       6  2      8  2   z    3 z         3      3  3       5  3
>   19 a  z  - 19 a  z  - 5 a  z  + -- - ---- + 4 a z  - 5 a  z  - 29 a  z  - 
                                     3    a
                                    a
 
                         4                                                 5
        7  3      4   3 z        2  4       4  4       6  4      8  4   5 z
>   16 a  z  - 9 z  + ---- + 12 a  z  + 47 a  z  + 31 a  z  + 8 a  z  + ---- - 
                        2                                                a
                       a
 
          5       3  5       5  5       7  5      6       2  6       4  6
>   15 a z  + 12 a  z  + 59 a  z  + 27 a  z  + 7 z  - 21 a  z  - 33 a  z  - 
 
        6  6      8  6        7       3  7       5  7       7  7      2  8
>   10 a  z  - 5 a  z  + 8 a z  - 18 a  z  - 42 a  z  - 16 a  z  + 8 a  z  + 
 
       4  8      6  8    8  8      3  9      5  9      7  9      4  10
>   2 a  z  - 5 a  z  + a  z  + 6 a  z  + 9 a  z  + 3 a  z  + 2 a  z   + 
 
       6  10
>   2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 313]], Vassiliev[3][Knot[11, Alternating, 313]]}
Out[15]=   
{1, 0}
In[16]:=
Kh[Knot[11, Alternating, 313]][q, t]
Out[16]=   
4           1        2        1        3        2        5        3       5
- + 5 q + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
q          17  8    15  7    13  7    13  6    11  6    11  5    9  5    9  4
          q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      5       6       5       6       6      4      6               3
>   ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t + 3 q  t + 
     7  4    7  3    5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t    q  t    q  t
 
     3  2      5  2    7  3
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a313
K11a312
K11a312
K11a314
K11a314