© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a317
K11a317
K11a319
K11a319
K11a318
Knotscape
This page is passe. Go here instead!

   The Knot K11a318

Visit K11a318's page at Knotilus!

Acknowledgement

K11a318 as Morse Link
DrawMorseLink

PD Presentation: X6271 X12,4,13,3 X16,6,17,5 X22,8,1,7 X18,10,19,9 X2,12,3,11 X20,14,21,13 X4,16,5,15 X8,18,9,17 X14,20,15,19 X10,22,11,21

Gauss Code: {1, -6, 2, -8, 3, -1, 4, -9, 5, -11, 6, -2, 7, -10, 8, -3, 9, -5, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 12 16 22 18 2 20 4 8 14 10

Alexander Polynomial: 5t-3 - 16t-2 + 29t-1 - 35 + 29t - 16t2 + 5t3

Conway Polynomial: 1 + 10z2 + 14z4 + 5z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {135, 6}

Jones Polynomial: q3 - 3q4 + 9q5 - 14q6 + 19q7 - 22q8 + 22q9 - 19q10 + 14q11 - 8q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 4q14 - q16 + q18 + 4q20 - 4q22 + 4q24 - 3q26 + q28 + 2q30 - 3q32 + 3q34 - 3q36 - q38 + q40 - q42

HOMFLY-PT Polynomial: - a-12 - 2a-12z2 - a-12z4 - a-10 - 2a-10z2 + a-10z4 + a-10z6 + 2a-8 + 11a-8z2 + 11a-8z4 + 3a-8z6 + a-6 + 3a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: a-17z - 2a-17z3 + a-17z5 + a-16z2 - 4a-16z4 + 3a-16z6 - 3a-15z + 7a-15z3 - 9a-15z5 + 6a-15z7 - 6a-14z2 + 13a-14z4 - 13a-14z6 + 8a-14z8 - 3a-13z + 11a-13z3 - 9a-13z5 - 2a-13z7 + 6a-13z9 - a-12 + 17a-12z4 - 28a-12z6 + 12a-12z8 + 2a-12z10 - 3a-11z + 13a-11z3 - 8a-11z5 - 13a-11z7 + 11a-11z9 + a-10 - 6a-10z2 + 17a-10z4 - 27a-10z6 + 10a-10z8 + 2a-10z10 - 4a-9z + 14a-9z3 - 15a-9z5 - 2a-9z7 + 5a-9z9 + 2a-8 - 10a-8z2 + 14a-8z4 - 14a-8z6 + 6a-8z8 + 3a-7z3 - 6a-7z5 + 3a-7z7 - a-6 + 3a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {10, 31}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11318. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         61 
j = 23        82  
j = 21       116   
j = 19      118    
j = 17     1111     
j = 15    811      
j = 13   611       
j = 11  38        
j = 9  6         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 318]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 318]]
Out[3]=   
PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[16, 6, 17, 5], X[22, 8, 1, 7], 
 
>   X[18, 10, 19, 9], X[2, 12, 3, 11], X[20, 14, 21, 13], X[4, 16, 5, 15], 
 
>   X[8, 18, 9, 17], X[14, 20, 15, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 318]]
Out[4]=   
GaussCode[1, -6, 2, -8, 3, -1, 4, -9, 5, -11, 6, -2, 7, -10, 8, -3, 9, -5, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 318]]
Out[5]=   
DTCode[6, 12, 16, 22, 18, 2, 20, 4, 8, 14, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 318]][t]
Out[6]=   
      5    16   29              2      3
-35 + -- - -- + -- + 29 t - 16 t  + 5 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 318]][z]
Out[7]=   
        2       4      6
1 + 10 z  + 14 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 318]}
In[9]:=
{KnotDet[Knot[11, Alternating, 318]], KnotSignature[Knot[11, Alternating, 318]]}
Out[9]=   
{135, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 318]][q]
Out[10]=   
 3      4      5       6       7       8       9       10       11      12
q  - 3 q  + 9 q  - 14 q  + 19 q  - 22 q  + 22 q  - 19 q   + 14 q   - 8 q   + 
 
       13    14
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 318]}
In[12]:=
A2Invariant[Knot[11, Alternating, 318]][q]
Out[12]=   
 10      12      14    16    18      20      22      24      26    28      30
q   - 2 q   + 4 q   - q   + q   + 4 q   - 4 q   + 4 q   - 3 q   + q   + 2 q   - 
 
       32      34      36    38    40    42
>   3 q   + 3 q   - 3 q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 318]][a, z]
Out[13]=   
                             2      2       2      2    4     4        4
  -12    -10   2     -6   2 z    2 z    11 z    3 z    z     z     11 z
-a    - a    + -- + a   - ---- - ---- + ----- + ---- - --- + --- + ----- + 
                8          12     10      8       6     12    10     8
               a          a      a       a       a     a     a      a
 
       4    6       6    6
    3 z    z     3 z    z
>   ---- + --- + ---- + --
      6     10     8     6
     a     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 318]][a, z]
Out[14]=   
                                                         2       2      2
  -12    -10   2     -6    z    3 z   3 z   3 z   4 z   z     6 z    6 z
-a    + a    + -- - a   + --- - --- - --- - --- - --- + --- - ---- - ---- - 
                8          17    15    13    11    9     16    14     10
               a          a     a     a     a     a     a     a      a
 
        2      2      3      3       3       3       3      3      4       4
    10 z    3 z    2 z    7 z    11 z    13 z    14 z    3 z    4 z    13 z
>   ----- + ---- - ---- + ---- + ----- + ----- + ----- + ---- - ---- + ----- + 
      8       6     17     15      13      11      9       7     16      14
     a       a     a      a       a       a       a       a     a       a
 
        4       4       4      4    5       5      5      5       5      5
    17 z    17 z    14 z    3 z    z     9 z    9 z    8 z    15 z    6 z
>   ----- + ----- + ----- - ---- + --- - ---- - ---- - ---- - ----- - ---- + 
      12      10      8       6     17    15     13     11      9       7
     a       a       a       a     a     a      a      a       a       a
 
       6       6       6       6       6    6      7      7       7      7
    3 z    13 z    28 z    27 z    14 z    z    6 z    2 z    13 z    2 z
>   ---- - ----- - ----- - ----- - ----- + -- + ---- - ---- - ----- - ---- + 
     16      14      12      10      8      6    15     13      11      9
    a       a       a       a       a      a    a      a       a       a
 
       7      8       8       8      8      9       9      9      10      10
    3 z    8 z    12 z    10 z    6 z    6 z    11 z    5 z    2 z     2 z
>   ---- + ---- + ----- + ----- + ---- + ---- + ----- + ---- + ----- + -----
      7     14      12      10      8     13      11      9      12      10
     a     a       a       a       a     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 318]], Vassiliev[3][Knot[11, Alternating, 318]]}
Out[15]=   
{10, 31}
In[16]:=
Kh[Knot[11, Alternating, 318]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3       13  4
q  + q  + 3 q  t + 6 q  t  + 3 q   t  + 8 q   t  + 6 q   t  + 11 q   t  + 
 
       15  4       15  5       17  5       17  6       19  6      19  7
>   8 q   t  + 11 q   t  + 11 q   t  + 11 q   t  + 11 q   t  + 8 q   t  + 
 
        21  7      21  8      23  8      23  9      25  9    25  10
>   11 q   t  + 6 q   t  + 8 q   t  + 2 q   t  + 6 q   t  + q   t   + 
 
       27  10    29  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a318
K11a317
K11a317
K11a319
K11a319