© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a290
K11a290
K11a292
K11a292
K11a291
Knotscape
This page is passe. Go here instead!

   The Knot K11a291

Visit K11a291's page at Knotilus!

Acknowledgement

K11a291 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X16,6,17,5 X22,8,1,7 X4,10,5,9 X18,12,19,11 X20,14,21,13 X2,16,3,15 X8,18,9,17 X12,20,13,19 X14,22,15,21

Gauss Code: {1, -8, 2, -5, 3, -1, 4, -9, 5, -2, 6, -10, 7, -11, 8, -3, 9, -6, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 10 16 22 4 18 20 2 8 12 14

Alexander Polynomial: 5t-3 - 14t-2 + 20t-1 - 21 + 20t - 14t2 + 5t3

Conway Polynomial: 1 + 9z2 + 16z4 + 5z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {99, 6}

Jones Polynomial: q3 - 3q4 + 7q5 - 9q6 + 14q7 - 16q8 + 15q9 - 14q10 + 10q11 - 6q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 2q14 + 2q18 + 4q20 - q22 + 4q24 - 2q26 - q28 - q30 - 4q32 + q34 - q36 + q38 + q40 - q42

HOMFLY-PT Polynomial: a-12 - 2a-12z2 - a-12z4 - 6a-10 - 6a-10z2 + a-10z4 + a-10z6 + 6a-8 + 16a-8z2 + 13a-8z4 + 3a-8z6 + a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: a-17z - 2a-17z3 + a-17z5 + 3a-16z2 - 6a-16z4 + 3a-16z6 + a-15z - a-15z3 - 5a-15z5 + 4a-15z7 + a-14z2 - 3a-14z4 - 3a-14z6 + 4a-14z8 + 2a-13z - 13a-13z3 + 14a-13z5 - 8a-13z7 + 4a-13z9 + a-12 - 2a-12z2 + 8a-12z4 - 5a-12z6 + 2a-12z10 - 4a-11z - 10a-11z3 + 36a-11z5 - 29a-11z7 + 9a-11z9 + 6a-10 - 19a-10z2 + 35a-10z4 - 22a-10z6 + 2a-10z8 + 2a-10z10 - 6a-9z + 6a-9z3 + 8a-9z5 - 14a-9z7 + 5a-9z9 + 6a-8 - 18a-8z2 + 27a-8z4 - 22a-8z6 + 6a-8z8 + 2a-7z3 - 8a-7z5 + 3a-7z7 + a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {9, 25}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11291. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         41 
j = 23        62  
j = 21       84   
j = 19      76    
j = 17     98     
j = 15    57      
j = 13   49       
j = 11  35        
j = 9  4         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 291]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 291]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 6, 17, 5], X[22, 8, 1, 7], 
 
>   X[4, 10, 5, 9], X[18, 12, 19, 11], X[20, 14, 21, 13], X[2, 16, 3, 15], 
 
>   X[8, 18, 9, 17], X[12, 20, 13, 19], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 291]]
Out[4]=   
GaussCode[1, -8, 2, -5, 3, -1, 4, -9, 5, -2, 6, -10, 7, -11, 8, -3, 9, -6, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 291]]
Out[5]=   
DTCode[6, 10, 16, 22, 4, 18, 20, 2, 8, 12, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 291]][t]
Out[6]=   
      5    14   20              2      3
-21 + -- - -- + -- + 20 t - 14 t  + 5 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 291]][z]
Out[7]=   
       2       4      6
1 + 9 z  + 16 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 291]}
In[9]:=
{KnotDet[Knot[11, Alternating, 291]], KnotSignature[Knot[11, Alternating, 291]]}
Out[9]=   
{99, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 291]][q]
Out[10]=   
 3      4      5      6       7       8       9       10       11      12
q  - 3 q  + 7 q  - 9 q  + 14 q  - 16 q  + 15 q  - 14 q   + 10 q   - 6 q   + 
 
       13    14
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 291]}
In[12]:=
A2Invariant[Knot[11, Alternating, 291]][q]
Out[12]=   
 10      12      14      18      20    22      24      26    28    30      32
q   - 2 q   + 2 q   + 2 q   + 4 q   - q   + 4 q   - 2 q   - q   - q   - 4 q   + 
 
     34    36    38    40    42
>   q   - q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 291]][a, z]
Out[13]=   
                     2      2       2    2    4     4        4      4    6
 -12    6    6    2 z    6 z    16 z    z    z     z     13 z    3 z    z
a    - --- + -- - ---- - ---- + ----- + -- - --- + --- + ----- + ---- + --- + 
        10    8    12     10      8      6    12    10     8       6     10
       a     a    a      a       a      a    a     a      a       a     a
 
       6    6
    3 z    z
>   ---- + --
      8     6
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 291]][a, z]
Out[14]=   
                                                   2    2       2       2
 -12    6    6     z     z    2 z   4 z   6 z   3 z    z     2 z    19 z
a    + --- + -- + --- + --- + --- - --- - --- + ---- + --- - ---- - ----- - 
        10    8    17    15    13    11    9     16     14    12      10
       a     a    a     a     a     a     a     a      a     a       a
 
        2    2      3    3        3       3      3      3      4      4
    18 z    z    2 z    z     13 z    10 z    6 z    2 z    6 z    3 z
>   ----- + -- - ---- - --- - ----- - ----- + ---- + ---- - ---- - ---- + 
      8      6    17     15     13      11      9      7     16     14
     a      a    a      a      a       a       a      a     a      a
 
       4       4       4      4    5       5       5       5      5      5
    8 z    35 z    27 z    3 z    z     5 z    14 z    36 z    8 z    8 z
>   ---- + ----- + ----- - ---- + --- - ---- + ----- + ----- + ---- - ---- + 
     12      10      8       6     17    15      13      11      9      7
    a       a       a       a     a     a       a       a       a      a
 
       6      6      6       6       6    6      7      7       7       7
    3 z    3 z    5 z    22 z    22 z    z    4 z    8 z    29 z    14 z
>   ---- - ---- - ---- - ----- - ----- + -- + ---- - ---- - ----- - ----- + 
     16     14     12      10      8      6    15     13      11      9
    a      a      a       a       a      a    a      a       a       a
 
       7      8      8      8      9      9      9      10      10
    3 z    4 z    2 z    6 z    4 z    9 z    5 z    2 z     2 z
>   ---- + ---- + ---- + ---- + ---- + ---- + ---- + ----- + -----
      7     14     10      8     13     11      9      12      10
     a     a      a       a     a      a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 291]], Vassiliev[3][Knot[11, Alternating, 291]]}
Out[15]=   
{9, 25}
In[16]:=
Kh[Knot[11, Alternating, 291]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3      13  4
q  + q  + 3 q  t + 4 q  t  + 3 q   t  + 5 q   t  + 4 q   t  + 9 q   t  + 
 
       15  4      15  5      17  5      17  6      19  6      19  7
>   5 q   t  + 7 q   t  + 9 q   t  + 8 q   t  + 7 q   t  + 6 q   t  + 
 
       21  7      21  8      23  8      23  9      25  9    25  10
>   8 q   t  + 4 q   t  + 6 q   t  + 2 q   t  + 4 q   t  + q   t   + 
 
       27  10    29  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a291
K11a290
K11a290
K11a292
K11a292