© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a291
K11a291
K11a293
K11a293
K11a292
Knotscape
This page is passe. Go here instead!

   The Knot K11a292

Visit K11a292's page at Knotilus!

Acknowledgement

K11a292 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,4,11,3 X16,6,17,5 X22,8,1,7 X4,10,5,9 X18,12,19,11 X20,14,21,13 X2,16,3,15 X8,18,9,17 X14,20,15,19 X12,22,13,21

Gauss Code: {1, -8, 2, -5, 3, -1, 4, -9, 5, -2, 6, -11, 7, -10, 8, -3, 9, -6, 10, -7, 11, -4}

DT (Dowker-Thistlethwaite) Code: 6 10 16 22 4 18 20 2 8 14 12

Alexander Polynomial: 10t-2 - 32t-1 + 45 - 32t + 10t2

Conway Polynomial: 1 + 8z2 + 10z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {129, 4}

Jones Polynomial: q2 - 4q3 + 10q4 - 14q5 + 19q6 - 21q7 + 20q8 - 17q9 + 12q10 - 7q11 + 3q12 - q13

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q6 - 3q8 + 3q10 + 2q12 - 3q14 + 5q16 - q18 + q20 + 2q22 - 2q24 + 3q26 - 4q28 + 2q32 - 4q34 + q36 + q38 - q40

HOMFLY-PT Polynomial: - a-12z2 - 2a-10 - 2a-10z2 + a-10z4 + a-8 + 5a-8z2 + 4a-8z4 + 2a-6 + 6a-6z2 + 4a-6z4 + a-4z4

Kauffman Polynomial: - 2a-15z + 5a-15z3 - 4a-15z5 + a-15z7 - 5a-14z2 + 13a-14z4 - 11a-14z6 + 3a-14z8 - a-13z + 3a-13z3 + 6a-13z5 - 11a-13z7 + 4a-13z9 - 4a-12z2 + 24a-12z4 - 25a-12z6 + 4a-12z8 + 2a-12z10 - 3a-11z + 10a-11z3 + 3a-11z5 - 23a-11z7 + 11a-11z9 + 2a-10 - 9a-10z2 + 27a-10z4 - 41a-10z6 + 14a-10z8 + 2a-10z10 - 3a-9z + 18a-9z3 - 29a-9z5 + 3a-9z7 + 7a-9z9 + a-8 - 4a-8z2 + 5a-8z4 - 17a-8z6 + 13a-8z8 + a-7z + 6a-7z3 - 18a-7z5 + 14a-7z7 - 2a-6 + 6a-6z2 - 10a-6z4 + 10a-6z6 + 4a-5z5 + a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {8, 22}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11292. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 27           1
j = 25          2 
j = 23         51 
j = 21        72  
j = 19       105   
j = 17      107    
j = 15     1110     
j = 13    810      
j = 11   611       
j = 9  48        
j = 7  6         
j = 514          
j = 31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 292]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 292]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 4, 11, 3], X[16, 6, 17, 5], X[22, 8, 1, 7], 
 
>   X[4, 10, 5, 9], X[18, 12, 19, 11], X[20, 14, 21, 13], X[2, 16, 3, 15], 
 
>   X[8, 18, 9, 17], X[14, 20, 15, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 292]]
Out[4]=   
GaussCode[1, -8, 2, -5, 3, -1, 4, -9, 5, -2, 6, -11, 7, -10, 8, -3, 9, -6, 10, 
 
>   -7, 11, -4]
In[5]:=
DTCode[Knot[11, Alternating, 292]]
Out[5]=   
DTCode[6, 10, 16, 22, 4, 18, 20, 2, 8, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 292]][t]
Out[6]=   
     10   32              2
45 + -- - -- - 32 t + 10 t
      2   t
     t
In[7]:=
Conway[Knot[11, Alternating, 292]][z]
Out[7]=   
       2       4
1 + 8 z  + 10 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 292]}
In[9]:=
{KnotDet[Knot[11, Alternating, 292]], KnotSignature[Knot[11, Alternating, 292]]}
Out[9]=   
{129, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 292]][q]
Out[10]=   
 2      3       4       5       6       7       8       9       10      11
q  - 4 q  + 10 q  - 14 q  + 19 q  - 21 q  + 20 q  - 17 q  + 12 q   - 7 q   + 
 
       12    13
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 292]}
In[12]:=
A2Invariant[Knot[11, Alternating, 292]][q]
Out[12]=   
 6      8      10      12      14      16    18    20      22      24      26
q  - 3 q  + 3 q   + 2 q   - 3 q   + 5 q   - q   + q   + 2 q   - 2 q   + 3 q   - 
 
       28      32      34    36    38    40
>   4 q   + 2 q   - 4 q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 292]][a, z]
Out[13]=   
                  2       2      2      2    4       4      4    4
-2     -8   2    z     2 z    5 z    6 z    z     4 z    4 z    z
--- + a   + -- - --- - ---- + ---- + ---- + --- + ---- + ---- + --
 10          6    12    10      8      6     10     8      6     4
a           a    a     a       a      a     a      a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 292]][a, z]
Out[14]=   
                                                 2      2      2      2
 2     -8   2    2 z    z    3 z   3 z   z    5 z    4 z    9 z    4 z
--- + a   - -- - --- - --- - --- - --- + -- - ---- - ---- - ---- - ---- + 
 10          6    15    13    11    9     7    14     12     10      8
a           a    a     a     a     a     a    a      a      a       a
 
       2      3      3       3       3      3       4       4       4      4
    6 z    5 z    3 z    10 z    18 z    6 z    13 z    24 z    27 z    5 z
>   ---- + ---- + ---- + ----- + ----- + ---- + ----- + ----- + ----- + ---- - 
      6     15     13      11      9       7      14      12      10      8
     a     a      a       a       a       a      a       a       a       a
 
        4    4      5      5      5       5       5      5       6       6
    10 z    z    4 z    6 z    3 z    29 z    18 z    4 z    11 z    25 z
>   ----- + -- - ---- + ---- + ---- - ----- - ----- + ---- - ----- - ----- - 
      6      4    15     13     11      9       7       5      14      12
     a      a    a      a      a       a       a       a      a       a
 
        6       6       6    7        7       7      7       7      8      8
    41 z    17 z    10 z    z     11 z    23 z    3 z    14 z    3 z    4 z
>   ----- - ----- + ----- + --- - ----- - ----- + ---- + ----- + ---- + ---- + 
      10      8       6      15     13      11      9      7      14     12
     a       a       a      a      a       a       a      a      a      a
 
        8       8      9       9      9      10      10
    14 z    13 z    4 z    11 z    7 z    2 z     2 z
>   ----- + ----- + ---- + ----- + ---- + ----- + -----
      10      8      13      11      9      12      10
     a       a      a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 292]], Vassiliev[3][Knot[11, Alternating, 292]]}
Out[15]=   
{8, 22}
In[16]:=
Kh[Knot[11, Alternating, 292]][q, t]
Out[16]=   
 3    5      5        7  2      9  2      9  3      11  3       11  4
q  + q  + 4 q  t + 6 q  t  + 4 q  t  + 8 q  t  + 6 q   t  + 11 q   t  + 
 
       13  4       13  5       15  5       15  6       17  6      17  7
>   8 q   t  + 10 q   t  + 11 q   t  + 10 q   t  + 10 q   t  + 7 q   t  + 
 
        19  7      19  8      21  8      21  9      23  9    23  10
>   10 q   t  + 5 q   t  + 7 q   t  + 2 q   t  + 5 q   t  + q   t   + 
 
       25  10    27  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a292
K11a291
K11a291
K11a293
K11a293