© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a289
K11a289
K11a291
K11a291
K11a290
Knotscape
This page is passe. Go here instead!

   The Knot K11a290

Visit K11a290's page at Knotilus!

Acknowledgement

K11a290 as Morse Link
DrawMorseLink

PD Presentation: X6271 X10,3,11,4 X16,5,17,6 X20,8,21,7 X18,9,19,10 X2,11,3,12 X8,13,9,14 X22,16,1,15 X4,17,5,18 X12,19,13,20 X14,22,15,21

Gauss Code: {1, -6, 2, -9, 3, -1, 4, -7, 5, -2, 6, -10, 7, -11, 8, -3, 9, -5, 10, -4, 11, -8}

DT (Dowker-Thistlethwaite) Code: 6 10 16 20 18 2 8 22 4 12 14

Alexander Polynomial: - 3t-3 + 15t-2 - 32t-1 + 41 - 32t + 15t2 - 3t3

Conway Polynomial: 1 + z2 - 3z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {K11a100, ...}

Determinant and Signature: {141, 0}

Jones Polynomial: - q-7 + 4q-6 - 9q-5 + 14q-4 - 19q-3 + 23q-2 - 22q-1 + 20 - 15q + 9q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-22 + 2q-18 - 3q-16 + 2q-14 - 3q-10 + 5q-8 - 2q-6 + 3q-4 - 2 + 4q2 - 4q4 + 2q6 + q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2z2 + a-2z4 + 1 + z2 - z4 - z6 - a2 - 6a2z2 - 6a2z4 - 2a2z6 + 2a4 + 6a4z2 + 3a4z4 - a6 - a6z2

Kauffman Polynomial: a-4z4 - a-3z3 + 4a-3z5 + 2a-2z2 - 7a-2z4 + 9a-2z6 - a-1z + 9a-1z3 - 19a-1z5 + 14a-1z7 + 1 - 5z2 + 14z4 - 25z6 + 15z8 - 2az + 12az3 - 14az5 - 9az7 + 10az9 + a2 - 19a2z2 + 54a2z4 - 60a2z6 + 16a2z8 + 3a2z10 - a3z + 2a3z3 + 22a3z5 - 41a3z7 + 16a3z9 + 2a4 - 17a4z2 + 45a4z4 - 39a4z6 + 5a4z8 + 3a4z10 - a5z + 3a5z3 + 10a5z5 - 17a5z7 + 6a5z9 + a6 - 5a6z2 + 13a6z4 - 13a6z6 + 4a6z8 - a7z + 3a7z3 - 3a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11290. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         61 
j = 3        93  
j = 1       116   
j = -1      1210    
j = -3     1110     
j = -5    812      
j = -7   611       
j = -9  38        
j = -11 16         
j = -13 3          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 290]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 290]]
Out[3]=   
PD[X[6, 2, 7, 1], X[10, 3, 11, 4], X[16, 5, 17, 6], X[20, 8, 21, 7], 
 
>   X[18, 9, 19, 10], X[2, 11, 3, 12], X[8, 13, 9, 14], X[22, 16, 1, 15], 
 
>   X[4, 17, 5, 18], X[12, 19, 13, 20], X[14, 22, 15, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 290]]
Out[4]=   
GaussCode[1, -6, 2, -9, 3, -1, 4, -7, 5, -2, 6, -10, 7, -11, 8, -3, 9, -5, 10, 
 
>   -4, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 290]]
Out[5]=   
DTCode[6, 10, 16, 20, 18, 2, 8, 22, 4, 12, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 290]][t]
Out[6]=   
     3    15   32              2      3
41 - -- + -- - -- - 32 t + 15 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 290]][z]
Out[7]=   
     2      4      6
1 + z  - 3 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 100], Knot[11, Alternating, 290]}
In[9]:=
{KnotDet[Knot[11, Alternating, 290]], KnotSignature[Knot[11, Alternating, 290]]}
Out[9]=   
{141, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 290]][q]
Out[10]=   
      -7   4    9    14   19   23   22             2      3    4
20 - q   + -- - -- + -- - -- + -- - -- - 15 q + 9 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 290]}
In[12]:=
A2Invariant[Knot[11, Alternating, 290]][q]
Out[12]=   
      -22    2     3     2     3    5    2    3       2      4      6    8
-2 - q    + --- - --- + --- - --- + -- - -- + -- + 4 q  - 4 q  + 2 q  + q  - 
             18    16    14    10    8    6    4
            q     q     q     q     q    q    q
 
       10    12
>   2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 290]][a, z]
Out[13]=   
                           2                                     4
     2      4    6    2   z       2  2      4  2    6  2    4   z       2  4
1 - a  + 2 a  - a  + z  + -- - 6 a  z  + 6 a  z  - a  z  - z  + -- - 6 a  z  + 
                           2                                     2
                          a                                     a
 
       4  4    6      2  6
>   3 a  z  - z  - 2 a  z
In[14]:=
Kauffman[Knot[11, Alternating, 290]][a, z]
Out[14]=   
                                                                2
     2      4    6   z            3      5      7        2   2 z        2  2
1 + a  + 2 a  + a  - - - 2 a z - a  z - a  z - a  z - 5 z  + ---- - 19 a  z  - 
                     a                                         2
                                                              a
 
                          3      3
        4  2      6  2   z    9 z          3      3  3      5  3      7  3
>   17 a  z  - 5 a  z  - -- + ---- + 12 a z  + 2 a  z  + 3 a  z  + 3 a  z  + 
                          3    a
                         a
 
             4      4                                       5       5
        4   z    7 z        2  4       4  4       6  4   4 z    19 z
>   14 z  + -- - ---- + 54 a  z  + 45 a  z  + 13 a  z  + ---- - ----- - 
             4     2                                       3      a
            a     a                                       a
 
                                                         6
          5       3  5       5  5      7  5       6   9 z        2  6
>   14 a z  + 22 a  z  + 10 a  z  - 3 a  z  - 25 z  + ---- - 60 a  z  - 
                                                        2
                                                       a
 
                              7
        4  6       6  6   14 z         7       3  7       5  7    7  7
>   39 a  z  - 13 a  z  + ----- - 9 a z  - 41 a  z  - 17 a  z  + a  z  + 
                            a
 
        8       2  8      4  8      6  8         9       3  9      5  9
>   15 z  + 16 a  z  + 5 a  z  + 4 a  z  + 10 a z  + 16 a  z  + 6 a  z  + 
 
       2  10      4  10
>   3 a  z   + 3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 290]], Vassiliev[3][Knot[11, Alternating, 290]]}
Out[15]=   
{1, -2}
In[16]:=
Kh[Knot[11, Alternating, 290]][q, t]
Out[16]=   
10            1        3        1        6        3       8       6      11
-- + 11 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q            15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
            q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      8      12      11      10    12               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 6 q t + 9 q  t + 3 q  t  + 6 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a290
K11a289
K11a289
K11a291
K11a291