© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a263
K11a263
K11a265
K11a265
K11a264
Knotscape
This page is passe. Go here instead!

   The Knot K11a264

Visit K11a264's page at Knotilus!

Acknowledgement

K11a264 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X16,6,17,5 X14,7,15,8 X4,9,5,10 X18,12,19,11 X20,14,21,13 X2,16,3,15 X22,17,1,18 X12,20,13,19 X10,22,11,21

Gauss Code: {1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -4, 8, -3, 9, -6, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 16 14 4 18 20 2 22 12 10

Alexander Polynomial: - t-4 + 6t-3 - 16t-2 + 28t-1 - 33 + 28t - 16t2 + 6t3 - t4

Conway Polynomial: 1 + 2z2 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a157, K11a305, ...}

Determinant and Signature: {135, 2}

Jones Polynomial: q-3 - 4q-2 + 8q-1 - 13 + 19q - 21q2 + 22q3 - 19q4 + 14q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + 2q-4 - 2q-2 - 1 + 4q2 - 3q4 + 6q6 - q8 + q10 + q12 - 4q14 + 3q16 - 2q18 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + a-4 + 7a-4z2 + 7a-4z4 + 2a-4z6 + a-2 - 5a-2z2 - 9a-2z4 - 5a-2z6 - a-2z8 + 2z2 + 3z4 + z6

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 5a-8z4 + 4a-8z6 - 2a-7z + 7a-7z3 - 13a-7z5 + 8a-7z7 + a-6 - 4a-6z2 + 7a-6z4 - 13a-6z6 + 9a-6z8 - 2a-5z + 11a-5z3 - 14a-5z5 + 6a-5z9 + a-4 - 13a-4z2 + 34a-4z4 - 36a-4z6 + 13a-4z8 + 2a-4z10 + 2a-3z3 + 10a-3z5 - 22a-3z7 + 12a-3z9 - a-2 - 13a-2z2 + 40a-2z4 - 39a-2z6 + 11a-2z8 + 2a-2z10 + 4a-1z3 - 10a-1z7 + 6a-1z9 - 5z2 + 16z4 - 19z6 + 7z8 + 5az3 - 10az5 + 4az7 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11264. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        83  
j = 9       116   
j = 7      118    
j = 5     1011     
j = 3    911      
j = 1   511       
j = -1  38        
j = -3 15         
j = -5 3          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 264]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 264]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[16, 6, 17, 5], X[14, 7, 15, 8], 
 
>   X[4, 9, 5, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], X[2, 16, 3, 15], 
 
>   X[22, 17, 1, 18], X[12, 20, 13, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 264]]
Out[4]=   
GaussCode[1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -4, 8, -3, 9, -6, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 264]]
Out[5]=   
DTCode[6, 8, 16, 14, 4, 18, 20, 2, 22, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 264]][t]
Out[6]=   
       -4   6    16   28              2      3    4
-33 - t   + -- - -- + -- + 28 t - 16 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 264]][z]
Out[7]=   
       2      6    8
1 + 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 157], Knot[11, Alternating, 264], 
 
>   Knot[11, Alternating, 305]}
In[9]:=
{KnotDet[Knot[11, Alternating, 264]], KnotSignature[Knot[11, Alternating, 264]]}
Out[9]=   
{135, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 264]][q]
Out[10]=   
       -3   4    8              2       3       4       5      6      7    8
-13 + q   - -- + - + 19 q - 21 q  + 22 q  - 19 q  + 14 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 264]}
In[12]:=
A2Invariant[Knot[11, Alternating, 264]][q]
Out[12]=   
      -8   2    2    2       2      4      6    8    10    12      14      16
-1 + q   - -- + -- - -- + 4 q  - 3 q  + 6 q  - q  + q   + q   - 4 q   + 3 q   - 
            6    4    2
           q    q    q
 
       18    22    24
>   2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 264]][a, z]
Out[13]=   
                             2      2      2           4      4      4
  -6    -4    -2      2   2 z    7 z    5 z       4   z    7 z    9 z     6
-a   + a   + a   + 2 z  - ---- + ---- - ---- + 3 z  - -- + ---- - ---- + z  + 
                            6      4      2            6     4      2
                           a      a      a            a     a      a
 
       6      6    8
    2 z    5 z    z
>   ---- - ---- - --
      4      2     2
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 264]][a, z]
Out[14]=   
                                      2      2       2       2    3      3
 -6    -4    -2   2 z   2 z      2   z    4 z    13 z    13 z    z    7 z
a   + a   - a   - --- - --- - 5 z  + -- - ---- - ----- - ----- - -- + ---- + 
                   7     5            8     6      4       2      9     7
                  a     a            a     a      a       a      a     a
 
        3      3      3                       4      4       4       4
    11 z    2 z    4 z         3       4   5 z    7 z    34 z    40 z
>   ----- + ---- + ---- + 5 a z  + 16 z  - ---- + ---- + ----- + ----- - 
      5       3     a                        8      6      4       2
     a       a                              a      a      a       a
 
               5       5       5       5                        6       6
       2  4   z    13 z    14 z    10 z          5       6   4 z    13 z
>   2 a  z  + -- - ----- - ----- + ----- - 10 a z  - 19 z  + ---- - ----- - 
               9     7       5       3                         8      6
              a     a       a       a                         a      a
 
        6       6              7       7       7                      8
    36 z    39 z     2  6   8 z    22 z    10 z         7      8   9 z
>   ----- - ----- + a  z  + ---- - ----- - ----- + 4 a z  + 7 z  + ---- + 
      4       2               7      3       a                       6
     a       a               a      a                               a
 
        8       8      9       9      9      10      10
    13 z    11 z    6 z    12 z    6 z    2 z     2 z
>   ----- + ----- + ---- + ----- + ---- + ----- + -----
      4       2       5      3      a       4       2
     a       a       a      a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 264]], Vassiliev[3][Knot[11, Alternating, 264]]}
Out[15]=   
{2, 3}
In[16]:=
Kh[Knot[11, Alternating, 264]][q, t]
Out[16]=   
          3     1       3       1       5      3      8    5 q       3
11 q + 9 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 11 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2      7  3       9  3      9  4      11  4
>   10 q  t + 11 q  t  + 11 q  t  + 8 q  t  + 11 q  t  + 6 q  t  + 8 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a264
K11a263
K11a263
K11a265
K11a265