© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a264
K11a264
K11a266
K11a266
K11a265
Knotscape
This page is passe. Go here instead!

   The Knot K11a265

Visit K11a265's page at Knotilus!

Acknowledgement

K11a265 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X16,6,17,5 X14,7,15,8 X4,9,5,10 X20,12,21,11 X18,14,19,13 X2,16,3,15 X22,17,1,18 X12,20,13,19 X10,22,11,21

Gauss Code: {1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -4, 8, -3, 9, -7, 10, -6, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 16 14 4 20 18 2 22 12 10

Alexander Polynomial: - 2t-3 + 11t-2 - 25t-1 + 33 - 25t + 11t2 - 2t3

Conway Polynomial: 1 + z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a56, K11a185, ...}

Determinant and Signature: {109, 0}

Jones Polynomial: q-4 - 4q-3 + 8q-2 - 12q-1 + 16 - 17q + 17q2 - 14q3 + 10q4 - 6q5 + 3q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11a185, ...}

A2 (sl(3)) Invariant: q-12 - 2q-10 + q-8 + q-6 - 3q-4 + 4q-2 - 1 + q2 + q4 - 2q6 + 3q8 - 2q10 + q12 + 2q14 - 2q16 + q18 - q22

HOMFLY-PT Polynomial: - a-6 - a-6z2 + 2a-4 + 4a-4z2 + 2a-4z4 - a-2 - 2a-2z2 - 2a-2z4 - a-2z6 + 1 - z2 - 2z4 - z6 + a2z2 + a2z4

Kauffman Polynomial: - a-7z + 4a-7z3 - 4a-7z5 + a-7z7 + a-6 - 6a-6z2 + 14a-6z4 - 12a-6z6 + 3a-6z8 - 3a-5z3 + 13a-5z5 - 14a-5z7 + 4a-5z9 + 2a-4 - 14a-4z2 + 31a-4z4 - 22a-4z6 + a-4z8 + 2a-4z10 + 2a-3z - 12a-3z3 + 30a-3z5 - 31a-3z7 + 10a-3z9 + a-2 - 10a-2z2 + 27a-2z4 - 29a-2z6 + 7a-2z8 + 2a-2z10 + a-1z - 3a-1z5 - 6a-1z7 + 6a-1z9 + 1 + z4 - 11z6 + 9z8 + 3az3 - 12az5 + 10az7 + 2a2z2 - 8a2z4 + 8a2z6 - 2a3z3 + 4a3z5 + a4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11265. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 15           1
j = 13          2 
j = 11         41 
j = 9        62  
j = 7       84   
j = 5      96    
j = 3     88     
j = 1    89      
j = -1   59       
j = -3  37        
j = -5 15         
j = -7 3          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 265]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 265]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[16, 6, 17, 5], X[14, 7, 15, 8], 
 
>   X[4, 9, 5, 10], X[20, 12, 21, 11], X[18, 14, 19, 13], X[2, 16, 3, 15], 
 
>   X[22, 17, 1, 18], X[12, 20, 13, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 265]]
Out[4]=   
GaussCode[1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -4, 8, -3, 9, -7, 10, 
 
>   -6, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 265]]
Out[5]=   
DTCode[6, 8, 16, 14, 4, 20, 18, 2, 22, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 265]][t]
Out[6]=   
     2    11   25              2      3
33 - -- + -- - -- - 25 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 265]][z]
Out[7]=   
     2    4      6
1 + z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 56], Knot[11, Alternating, 185], 
 
>   Knot[11, Alternating, 265]}
In[9]:=
{KnotDet[Knot[11, Alternating, 265]], KnotSignature[Knot[11, Alternating, 265]]}
Out[9]=   
{109, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 265]][q]
Out[10]=   
      -4   4    8    12              2       3       4      5      6    7
16 + q   - -- + -- - -- - 17 q + 17 q  - 14 q  + 10 q  - 6 q  + 3 q  - q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 185], Knot[11, Alternating, 265]}
In[12]:=
A2Invariant[Knot[11, Alternating, 265]][q]
Out[12]=   
      -12    2     -8    -6   3    4     2    4      6      8      10    12
-1 + q    - --- + q   + q   - -- + -- + q  + q  - 2 q  + 3 q  - 2 q   + q   + 
             10                4    2
            q                 q    q
 
       14      16    18    22
>   2 q   - 2 q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 265]][a, z]
Out[13]=   
                           2      2      2                     4      4
     -6   2     -2    2   z    4 z    2 z     2  2      4   2 z    2 z
1 - a   + -- - a   - z  - -- + ---- - ---- + a  z  - 2 z  + ---- - ---- + 
           4               6     4      2                     4      2
          a               a     a      a                     a      a
 
                  6
     2  4    6   z
>   a  z  - z  - --
                  2
                 a
In[14]:=
Kauffman[Knot[11, Alternating, 265]][a, z]
Out[14]=   
                                       2       2       2                3
     -6   2     -2   z    2 z   z   6 z    14 z    10 z       2  2   4 z
1 + a   + -- + a   - -- + --- + - - ---- - ----- - ----- + 2 a  z  + ---- - 
           4          7    3    a     6      4       2                 7
          a          a    a          a      a       a                 a
 
       3       3                               4       4       4
    3 z    12 z         3      3  3    4   14 z    31 z    27 z       2  4
>   ---- - ----- + 3 a z  - 2 a  z  + z  + ----- + ----- + ----- - 8 a  z  + 
      5      3                               6       4       2
     a      a                               a       a       a
 
               5       5       5      5                                   6
     4  4   4 z    13 z    30 z    3 z          5      3  5       6   12 z
>   a  z  - ---- + ----- + ----- - ---- - 12 a z  + 4 a  z  - 11 z  - ----- - 
              7      5       3      a                                   6
             a      a       a                                          a
 
        6       6              7       7       7      7
    22 z    29 z       2  6   z    14 z    31 z    6 z          7      8
>   ----- - ----- + 8 a  z  + -- - ----- - ----- - ---- + 10 a z  + 9 z  + 
      4       2                7     5       3      a
     a       a                a     a       a
 
       8    8      8      9       9      9      10      10
    3 z    z    7 z    4 z    10 z    6 z    2 z     2 z
>   ---- + -- + ---- + ---- + ----- + ---- + ----- + -----
      6     4     2      5      3      a       4       2
     a     a     a      a      a              a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 265]], Vassiliev[3][Knot[11, Alternating, 265]]}
Out[15]=   
{1, 2}
In[16]:=
Kh[Knot[11, Alternating, 265]][q, t]
Out[16]=   
9           1       3       1       5       3      7      5               3
- + 8 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 9 q t + 8 q  t + 
q          9  4    7  3    5  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t    q  t    q  t
 
       3  2      5  2      5  3      7  3      7  4      9  4      9  5
>   8 q  t  + 9 q  t  + 6 q  t  + 8 q  t  + 4 q  t  + 6 q  t  + 2 q  t  + 
 
       11  5    11  6      13  6    15  7
>   4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a265
K11a264
K11a264
K11a266
K11a266