© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a262
K11a262
K11a264
K11a264
K11a263
Knotscape
This page is passe. Go here instead!

   The Knot K11a263

Visit K11a263's page at Knotilus!

Acknowledgement

K11a263 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8493 X16,6,17,5 X2837 X20,10,21,9 X22,12,1,11 X18,14,19,13 X4,16,5,15 X12,18,13,17 X14,20,15,19 X10,22,11,21

Gauss Code: {1, -4, 2, -8, 3, -1, 4, -2, 5, -11, 6, -9, 7, -10, 8, -3, 9, -7, 10, -5, 11, -6}

DT (Dowker-Thistlethwaite) Code: 6 8 16 2 20 22 18 4 12 14 10

Alexander Polynomial: 2t-4 - 6t-3 + 11t-2 - 14t-1 + 15 - 14t + 11t2 - 6t3 + 2t4

Conway Polynomial: 1 + 8z2 + 15z4 + 10z6 + 2z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {81, 8}

Jones Polynomial: q4 - q5 + 5q6 - 7q7 + 10q8 - 13q9 + 12q10 - 12q11 + 10q12 - 6q13 + 3q14 - q15

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q14 + 4q18 + q20 + 4q22 + q24 - 2q26 - q28 - 7q30 - 2q34 + 2q36 + 3q38 + q42 - 2q44

HOMFLY-PT Polynomial: - a-14 + 5a-12 + a-12z2 - 3a-12z4 - a-12z6 - 11a-10 - 13a-10z2 + 4a-10z6 + a-10z8 + 8a-8 + 20a-8z2 + 18a-8z4 + 7a-8z6 + a-8z8

Kauffman Polynomial: a-19z3 + 3a-18z4 - 3a-17z3 + 6a-17z5 + 6a-16z2 - 15a-16z4 + 10a-16z6 - 6a-15z + 18a-15z3 - 27a-15z5 + 12a-15z7 + a-14 + 5a-14z2 - 18a-14z6 + 9a-14z8 - 16a-13z + 43a-13z3 - 36a-13z5 + a-13z7 + 4a-13z9 + 5a-12 - 7a-12z2 + 28a-12z4 - 32a-12z6 + 7a-12z8 + a-12z10 - 22a-11z + 37a-11z3 - 6a-11z5 - 14a-11z7 + 5a-11z9 + 11a-10 - 26a-10z2 + 28a-10z4 - 11a-10z6 - a-10z8 + a-10z10 - 12a-9z + 16a-9z3 - 3a-9z5 - 3a-9z7 + a-9z9 + 8a-8 - 20a-8z2 + 18a-8z4 - 7a-8z6 + a-8z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {8, 21}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=8 is the signature of 11263. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 31           1
j = 29          2 
j = 27         41 
j = 25        62  
j = 23       64   
j = 21      66    
j = 19     76     
j = 17    36      
j = 15   47       
j = 13  13        
j = 11  4         
j = 911          
j = 71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 263]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 263]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[16, 6, 17, 5], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[22, 12, 1, 11], X[18, 14, 19, 13], X[4, 16, 5, 15], 
 
>   X[12, 18, 13, 17], X[14, 20, 15, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 263]]
Out[4]=   
GaussCode[1, -4, 2, -8, 3, -1, 4, -2, 5, -11, 6, -9, 7, -10, 8, -3, 9, -7, 10, 
 
>   -5, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 263]]
Out[5]=   
DTCode[6, 8, 16, 2, 20, 22, 18, 4, 12, 14, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 263]][t]
Out[6]=   
     2    6    11   14              2      3      4
15 + -- - -- + -- - -- - 14 t + 11 t  - 6 t  + 2 t
      4    3    2   t
     t    t    t
In[7]:=
Conway[Knot[11, Alternating, 263]][z]
Out[7]=   
       2       4       6      8
1 + 8 z  + 15 z  + 10 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 263]}
In[9]:=
{KnotDet[Knot[11, Alternating, 263]], KnotSignature[Knot[11, Alternating, 263]]}
Out[9]=   
{81, 8}
In[10]:=
J=Jones[Knot[11, Alternating, 263]][q]
Out[10]=   
 4    5      6      7       8       9       10       11       12      13
q  - q  + 5 q  - 7 q  + 10 q  - 13 q  + 12 q   - 12 q   + 10 q   - 6 q   + 
 
       14    15
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 263]}
In[12]:=
A2Invariant[Knot[11, Alternating, 263]][q]
Out[12]=   
 14      18    20      22    24      26    28      30      34      36      38
q   + 4 q   + q   + 4 q   + q   - 2 q   - q   - 7 q   - 2 q   + 2 q   + 3 q   + 
 
     42      44
>   q   - 2 q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 263]][a, z]
Out[13]=   
                          2        2       2      4       4    6       6
  -14    5    11    8    z     13 z    20 z    3 z    18 z    z     4 z
-a    + --- - --- + -- + --- - ----- + ----- - ---- + ----- - --- + ---- + 
         12    10    8    12     10      8      12      8      12    10
        a     a     a    a      a       a      a       a      a     a
 
       6    8     8
    7 z    z     z
>   ---- + --- + --
      8     10    8
     a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 263]][a, z]
Out[14]=   
                                                      2      2      2       2
 -14    5    11    8    6 z   16 z   22 z   12 z   6 z    5 z    7 z    26 z
a    + --- + --- + -- - --- - ---- - ---- - ---- + ---- + ---- - ---- - ----- - 
        12    10    8    15    13     11      9     16     14     12      10
       a     a     a    a     a      a       a     a      a      a       a
 
        2    3       3       3       3       3       3      4       4       4
    20 z    z     3 z    18 z    43 z    37 z    16 z    3 z    15 z    28 z
>   ----- + --- - ---- + ----- + ----- + ----- + ----- + ---- - ----- + ----- + 
      8      19    17      15      13      11      9      18      16      12
     a      a     a       a       a       a       a      a       a       a
 
        4       4      5       5       5      5      5       6       6
    28 z    18 z    6 z    27 z    36 z    6 z    3 z    10 z    18 z
>   ----- + ----- + ---- - ----- - ----- - ---- - ---- + ----- - ----- - 
      10      8      17      15      13     11      9      16      14
     a       a      a       a       a      a       a      a       a
 
        6       6      6       7    7        7      7      8      8    8
    32 z    11 z    7 z    12 z    z     14 z    3 z    9 z    7 z    z
>   ----- - ----- - ---- + ----- + --- - ----- - ---- + ---- + ---- - --- + 
      12      10      8      15     13     11      9     14     12     10
     a       a       a      a      a      a       a     a      a      a
 
     8      9      9    9    10    10
    z    4 z    5 z    z    z     z
>   -- + ---- + ---- + -- + --- + ---
     8    13     11     9    12    10
    a    a      a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 263]], Vassiliev[3][Knot[11, Alternating, 263]]}
Out[15]=   
{8, 21}
In[16]:=
Kh[Knot[11, Alternating, 263]][q, t]
Out[16]=   
 7    9    9        11  2    13  2      13  3      15  3      15  4
q  + q  + q  t + 4 q   t  + q   t  + 3 q   t  + 4 q   t  + 7 q   t  + 
 
       17  4      17  5      19  5      19  6      21  6      21  7
>   3 q   t  + 6 q   t  + 7 q   t  + 6 q   t  + 6 q   t  + 6 q   t  + 
 
       23  7      23  8      25  8      25  9      27  9    27  10
>   6 q   t  + 4 q   t  + 6 q   t  + 2 q   t  + 4 q   t  + q   t   + 
 
       29  10    31  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a263
K11a262
K11a262
K11a264
K11a264