© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a261
K11a261
K11a263
K11a263
K11a262
Knotscape
This page is passe. Go here instead!

   The Knot K11a262

Visit K11a262's page at Knotilus!

Acknowledgement

K11a262 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X14,5,15,6 X16,8,17,7 X4,9,5,10 X20,11,21,12 X18,13,19,14 X2,15,3,16 X22,18,1,17 X12,19,13,20 X10,21,11,22

Gauss Code: {1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -3, 8, -4, 9, -7, 10, -6, 11, -9}

DT (Dowker-Thistlethwaite) Code: 6 8 14 16 4 20 18 2 22 12 10

Alexander Polynomial: 2t-3 - 11t-2 + 25t-1 - 31 + 25t - 11t2 + 2t3

Conway Polynomial: 1 - z2 + z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a10, ...}

Determinant and Signature: {107, -2}

Jones Polynomial: q-9 - 3q-8 + 6q-7 - 10q-6 + 14q-5 - 17q-4 + 17q-3 - 15q-2 + 12q-1 - 7 + 4q - q2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 - q-24 + 2q-22 - 2q-20 - q-18 + 2q-16 - 3q-14 + 2q-12 - q-10 + 2q-6 - 3q-4 + 4q-2 + 2q4 - q6

HOMFLY-PT Polynomial: 1 - z2 - z4 + a2z2 + 2a2z4 + a2z6 + a4 + 2a4z2 + 2a4z4 + a4z6 - 2a6 - 4a6z2 - 2a6z4 + a8 + a8z2

Kauffman Polynomial: - a-1z3 + a-1z5 + 1 + 2z2 - 7z4 + 4z6 + az3 - 9az5 + 6az7 - a2z4 - 7a2z6 + 6a2z8 + 2a3z - 8a3z3 + 9a3z5 - 8a3z7 + 5a3z9 + a4 - 12a4z2 + 27a4z4 - 19a4z6 + 4a4z8 + 2a4z10 + 4a5z - 21a5z3 + 43a5z5 - 32a5z7 + 10a5z9 + 2a6 - 18a6z2 + 39a6z4 - 25a6z6 + 3a6z8 + 2a6z10 + a7z - 6a7z3 + 15a7z5 - 15a7z7 + 5a7z9 + a8 - 7a8z2 + 15a8z4 - 16a8z6 + 5a8z8 - a9z + 5a9z3 - 9a9z5 + 3a9z7 + a10z2 - 3a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11262. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5           1
j = 3          3 
j = 1         41 
j = -1        83  
j = -3       85   
j = -5      97    
j = -7     88     
j = -9    69      
j = -11   48       
j = -13  26        
j = -15 14         
j = -17 2          
j = -191           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 262]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 262]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[14, 5, 15, 6], X[16, 8, 17, 7], 
 
>   X[4, 9, 5, 10], X[20, 11, 21, 12], X[18, 13, 19, 14], X[2, 15, 3, 16], 
 
>   X[22, 18, 1, 17], X[12, 19, 13, 20], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 262]]
Out[4]=   
GaussCode[1, -8, 2, -5, 3, -1, 4, -2, 5, -11, 6, -10, 7, -3, 8, -4, 9, -7, 10, 
 
>   -6, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 262]]
Out[5]=   
DTCode[6, 8, 14, 16, 4, 20, 18, 2, 22, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 262]][t]
Out[6]=   
      2    11   25              2      3
-31 + -- - -- + -- + 25 t - 11 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 262]][z]
Out[7]=   
     2    4      6
1 - z  + z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 10], Knot[11, Alternating, 262]}
In[9]:=
{KnotDet[Knot[11, Alternating, 262]], KnotSignature[Knot[11, Alternating, 262]]}
Out[9]=   
{107, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 262]][q]
Out[10]=   
      -9   3    6    10   14   17   17   15   12          2
-7 + q   - -- + -- - -- + -- - -- + -- - -- + -- + 4 q - q
            8    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 262]}
In[12]:=
A2Invariant[Knot[11, Alternating, 262]][q]
Out[12]=   
 -28    -24    2     2     -18    2     3     2     -10   2    3    4       4
q    - q    + --- - --- - q    + --- - --- + --- - q    + -- - -- + -- + 2 q  - 
               22    20           16    14    12           6    4    2
              q     q            q     q     q            q    q    q
 
     6
>   q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 262]][a, z]
Out[13]=   
     4      6    8    2    2  2      4  2      6  2    8  2    4      2  4
1 + a  - 2 a  + a  - z  + a  z  + 2 a  z  - 4 a  z  + a  z  - z  + 2 a  z  + 
 
       4  4      6  4    2  6    4  6
>   2 a  z  - 2 a  z  + a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 262]][a, z]
Out[14]=   
     4      6    8      3        5      7      9        2       4  2
1 + a  + 2 a  + a  + 2 a  z + 4 a  z + a  z - a  z + 2 z  - 12 a  z  - 
 
                                   3
        6  2      8  2    10  2   z       3      3  3       5  3      7  3
>   18 a  z  - 7 a  z  + a   z  - -- + a z  - 8 a  z  - 21 a  z  - 6 a  z  + 
                                  a
 
                                                                          5
       9  3      4    2  4       4  4       6  4       8  4      10  4   z
>   5 a  z  - 7 z  - a  z  + 27 a  z  + 39 a  z  + 15 a  z  - 3 a   z  + -- - 
                                                                         a
 
         5      3  5       5  5       7  5      9  5      6      2  6
>   9 a z  + 9 a  z  + 43 a  z  + 15 a  z  - 9 a  z  + 4 z  - 7 a  z  - 
 
        4  6       6  6       8  6    10  6        7      3  7       5  7
>   19 a  z  - 25 a  z  - 16 a  z  + a   z  + 6 a z  - 8 a  z  - 32 a  z  - 
 
        7  7      9  7      2  8      4  8      6  8      8  8      3  9
>   15 a  z  + 3 a  z  + 6 a  z  + 4 a  z  + 3 a  z  + 5 a  z  + 5 a  z  + 
 
        5  9      7  9      4  10      6  10
>   10 a  z  + 5 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 262]], Vassiliev[3][Knot[11, Alternating, 262]]}
Out[15]=   
{-1, 3}
In[16]:=
Kh[Knot[11, Alternating, 262]][q, t]
Out[16]=   
5    8     1        2        1        4        2        6        4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        6       9       8       8       9      7      8     3 t
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + 
     11  4    9  4    9  3    7  3    7  2    5  2    5      3      q
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
               2      3  2    5  3
>   4 q t + q t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a262
K11a261
K11a261
K11a263
K11a263