© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a247
K11a247
K11a249
K11a249
K11a248
Knotscape
This page is passe. Go here instead!

   The Knot K11a248

Visit K11a248's page at Knotilus!

Acknowledgement

K11a248 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X10,6,11,5 X18,8,19,7 X16,9,17,10 X20,11,21,12 X22,13,1,14 X4,16,5,15 X2,17,3,18 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -9, 2, -8, 3, -1, 4, -2, 5, -3, 6, -11, 7, -10, 8, -5, 9, -4, 10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 6 8 10 18 16 20 22 4 2 14 12

Alexander Polynomial: - t-4 + 6t-3 - 18t-2 + 34t-1 - 41 + 34t - 18t2 + 6t3 - t4

Conway Polynomial: 1 - 2z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {K11a71, ...}

Determinant and Signature: {159, -2}

Jones Polynomial: - q-8 + 5q-7 - 11q-6 + 17q-5 - 23q-4 + 26q-3 - 25q-2 + 22q-1 - 15 + 9q - 4q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a71, ...}

A2 (sl(3)) Invariant: - q-24 + 2q-22 - 2q-18 + 4q-16 - 5q-14 + q-12 - 2q-8 + 6q-6 - 4q-4 + 5q-2 - 1 - 2q2 + 3q4 - 2q6 + q8

HOMFLY-PT Polynomial: 1 + 3z2 + 3z4 + z6 - 7a2z2 - 10a2z4 - 5a2z6 - a2z8 + 5a4z2 + 6a4z4 + 2a4z6 - a6z2 - a6z4

Kauffman Polynomial: - 2a-2z4 + a-2z6 + 4a-1z3 - 9a-1z5 + 4a-1z7 + 1 - 7z2 + 19z4 - 21z6 + 8z8 + az - 2az3 + 10az5 - 16az7 + 8az9 - 15a2z2 + 45a2z4 - 44a2z6 + 12a2z8 + 3a2z10 + 3a3z - 7a3z3 + 21a3z5 - 33a3z7 + 17a3z9 - 9a4z2 + 32a4z4 - 44a4z6 + 17a4z8 + 3a4z10 + 3a5z + 3a5z3 - 14a5z5 - 2a5z7 + 9a5z9 - a6z2 + 4a6z4 - 17a6z6 + 13a6z8 + a7z + 4a7z3 - 15a7z5 + 11a7z7 - 4a8z4 + 5a8z6 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 0}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11248. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          3 
j = 3         61 
j = 1        93  
j = -1       136   
j = -3      1310    
j = -5     1312     
j = -7    1013      
j = -9   713       
j = -11  410        
j = -13 17         
j = -15 4          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 248]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 248]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[18, 8, 19, 7], 
 
>   X[16, 9, 17, 10], X[20, 11, 21, 12], X[22, 13, 1, 14], X[4, 16, 5, 15], 
 
>   X[2, 17, 3, 18], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 248]]
Out[4]=   
GaussCode[1, -9, 2, -8, 3, -1, 4, -2, 5, -3, 6, -11, 7, -10, 8, -5, 9, -4, 10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 248]]
Out[5]=   
DTCode[6, 8, 10, 18, 16, 20, 22, 4, 2, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 248]][t]
Out[6]=   
       -4   6    18   34              2      3    4
-41 - t   + -- - -- + -- + 34 t - 18 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 248]][z]
Out[7]=   
       4      6    8
1 - 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 71], Knot[11, Alternating, 248]}
In[9]:=
{KnotDet[Knot[11, Alternating, 248]], KnotSignature[Knot[11, Alternating, 248]]}
Out[9]=   
{159, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 248]][q]
Out[10]=   
       -8   5    11   17   23   26   25   22            2    3
-15 - q   + -- - -- + -- - -- + -- - -- + -- + 9 q - 4 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 71], Knot[11, Alternating, 248]}
In[12]:=
A2Invariant[Knot[11, Alternating, 248]][q]
Out[12]=   
      -24    2     2     4     5     -12   2    6    4    5       2      4
-1 - q    + --- - --- + --- - --- + q    - -- + -- - -- + -- - 2 q  + 3 q  - 
             22    18    16    14           8    6    4    2
            q     q     q     q            q    q    q    q
 
       6    8
>   2 q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 248]][a, z]
Out[13]=   
       2      2  2      4  2    6  2      4       2  4      4  4    6  4    6
1 + 3 z  - 7 a  z  + 5 a  z  - a  z  + 3 z  - 10 a  z  + 6 a  z  - a  z  + z  - 
 
       2  6      4  6    2  8
>   5 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 248]][a, z]
Out[14]=   
                                                                          3
             3        5      7        2       2  2      4  2    6  2   4 z
1 + a z + 3 a  z + 3 a  z + a  z - 7 z  - 15 a  z  - 9 a  z  - a  z  + ---- - 
                                                                        a
 
                                                      4
         3      3  3      5  3      7  3       4   2 z        2  4       4  4
>   2 a z  - 7 a  z  + 3 a  z  + 4 a  z  + 19 z  - ---- + 45 a  z  + 32 a  z  + 
                                                     2
                                                    a
 
                           5
       6  4      8  4   9 z          5       3  5       5  5       7  5
>   4 a  z  - 4 a  z  - ---- + 10 a z  + 21 a  z  - 14 a  z  - 15 a  z  + 
                         a
 
                     6                                                 7
     9  5       6   z        2  6       4  6       6  6      8  6   4 z
>   a  z  - 21 z  + -- - 44 a  z  - 44 a  z  - 17 a  z  + 5 a  z  + ---- - 
                     2                                               a
                    a
 
          7       3  7      5  7       7  7      8       2  8       4  8
>   16 a z  - 33 a  z  - 2 a  z  + 11 a  z  + 8 z  + 12 a  z  + 17 a  z  + 
 
        6  8        9       3  9      5  9      2  10      4  10
>   13 a  z  + 8 a z  + 17 a  z  + 9 a  z  + 3 a  z   + 3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 248]], Vassiliev[3][Knot[11, Alternating, 248]]}
Out[15]=   
{0, 0}
In[16]:=
Kh[Knot[11, Alternating, 248]][q, t]
Out[16]=   
10   13     1        4        1        7        4        10       7      13
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q     17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q         q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     10      13      13      12     13    6 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 9 q t + 3 q t  + 6 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a248
K11a247
K11a247
K11a249
K11a249