© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a248
K11a248
K11a250
K11a250
K11a249
Knotscape
This page is passe. Go here instead!

   The Knot K11a249

Visit K11a249's page at Knotilus!

Acknowledgement

K11a249 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X10,6,11,5 X18,8,19,7 X16,9,17,10 X22,11,1,12 X20,13,21,14 X4,16,5,15 X2,17,3,18 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -9, 2, -8, 3, -1, 4, -2, 5, -3, 6, -11, 7, -10, 8, -5, 9, -4, 10, -7, 11, -6}

DT (Dowker-Thistlethwaite) Code: 6 8 10 18 16 22 20 4 2 14 12

Alexander Polynomial: - 2t-3 + 11t-2 - 27t-1 + 37 - 27t + 11t2 - 2t3

Conway Polynomial: 1 - z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a8, K11a38, K11a187, ...}

Determinant and Signature: {117, 0}

Jones Polynomial: - q-7 + 4q-6 - 7q-5 + 11q-4 - 16q-3 + 18q-2 - 18q-1 + 17 - 12q + 8q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-22 + q-20 + 2q-18 - 2q-16 + 2q-14 - 3q-10 + 2q-8 - 3q-6 + q-4 + q-2 + 5q2 - 3q4 + q6 + q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2z2 + a-2z4 + 2 - z2 - 2z4 - z6 - 2a2 - 3a2z2 - 2a2z4 - a2z6 + a4 + 3a4z2 + 2a4z4 - a6z2

Kauffman Polynomial: a-4z4 - 2a-3z3 + 4a-3z5 + 2a-2z2 - 8a-2z4 + 8a-2z6 + a-1z3 - 11a-1z5 + 10a-1z7 + 2 - z2 + 3z4 - 14z6 + 10z8 - 6az3 + 10az5 - 15az7 + 8az9 + 2a2 - 12a2z2 + 35a2z4 - 33a2z6 + 5a2z8 + 3a2z10 - a3z - 18a3z3 + 53a3z5 - 49a3z7 + 14a3z9 + a4 - 12a4z2 + 37a4z4 - 26a4z6 - a4z8 + 3a4z10 - a5z - 8a5z3 + 25a5z5 - 23a5z7 + 6a5z9 - 3a6z2 + 14a6z4 - 15a6z6 + 4a6z8 + a7z3 - 3a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11249. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         51 
j = 3        73  
j = 1       105   
j = -1      98    
j = -3     99     
j = -5    79      
j = -7   49       
j = -9  37        
j = -11 14         
j = -13 3          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 249]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 249]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[18, 8, 19, 7], 
 
>   X[16, 9, 17, 10], X[22, 11, 1, 12], X[20, 13, 21, 14], X[4, 16, 5, 15], 
 
>   X[2, 17, 3, 18], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 249]]
Out[4]=   
GaussCode[1, -9, 2, -8, 3, -1, 4, -2, 5, -3, 6, -11, 7, -10, 8, -5, 9, -4, 10, 
 
>   -7, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 249]]
Out[5]=   
DTCode[6, 8, 10, 18, 16, 22, 20, 4, 2, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 249]][t]
Out[6]=   
     2    11   27              2      3
37 - -- + -- - -- - 27 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 249]][z]
Out[7]=   
     2    4      6
1 - z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 8], Knot[11, Alternating, 38], 
 
>   Knot[11, Alternating, 187], Knot[11, Alternating, 249]}
In[9]:=
{KnotDet[Knot[11, Alternating, 249]], KnotSignature[Knot[11, Alternating, 249]]}
Out[9]=   
{117, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 249]][q]
Out[10]=   
      -7   4    7    11   16   18   18             2      3    4
17 - q   + -- - -- + -- - -- + -- - -- - 12 q + 8 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 249]}
In[12]:=
A2Invariant[Knot[11, Alternating, 249]][q]
Out[12]=   
  -22    -20    2     2     2     3    2    3     -4    -2      2      4    6
-q    + q    + --- - --- + --- - --- + -- - -- + q   + q   + 5 q  - 3 q  + q  + 
                18    16    14    10    8    6
               q     q     q     q     q    q
 
     8      10    12
>   q  - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 249]][a, z]
Out[13]=   
                      2                                       4
       2    4    2   z       2  2      4  2    6  2      4   z       2  4
2 - 2 a  + a  - z  + -- - 3 a  z  + 3 a  z  - a  z  - 2 z  + -- - 2 a  z  + 
                      2                                       2
                     a                                       a
 
       4  4    6    2  6
>   2 a  z  - z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 249]][a, z]
Out[14]=   
                                      2
       2    4    3      5      2   2 z        2  2       4  2      6  2
2 + 2 a  + a  - a  z - a  z - z  + ---- - 12 a  z  - 12 a  z  - 3 a  z  - 
                                     2
                                    a
 
       3    3                                                 4      4
    2 z    z         3       3  3      5  3    7  3      4   z    8 z
>   ---- + -- - 6 a z  - 18 a  z  - 8 a  z  + a  z  + 3 z  + -- - ---- + 
      3    a                                                  4     2
     a                                                       a     a
 
                                        5       5
        2  4       4  4       6  4   4 z    11 z          5       3  5
>   35 a  z  + 37 a  z  + 14 a  z  + ---- - ----- + 10 a z  + 53 a  z  + 
                                       3      a
                                      a
 
                                    6
        5  5      7  5       6   8 z        2  6       4  6       6  6
>   25 a  z  - 3 a  z  - 14 z  + ---- - 33 a  z  - 26 a  z  - 15 a  z  + 
                                   2
                                  a
 
        7
    10 z          7       3  7       5  7    7  7       8      2  8    4  8
>   ----- - 15 a z  - 49 a  z  - 23 a  z  + a  z  + 10 z  + 5 a  z  - a  z  + 
      a
 
       6  8        9       3  9      5  9      2  10      4  10
>   4 a  z  + 8 a z  + 14 a  z  + 6 a  z  + 3 a  z   + 3 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 249]], Vassiliev[3][Knot[11, Alternating, 249]]}
Out[15]=   
{-1, 1}
In[16]:=
Kh[Knot[11, Alternating, 249]][q, t]
Out[16]=   
8            1        3        1        4        3       7       4       9
- + 10 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q           15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
           q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7       9       9      9      9               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 5 q t + 7 q  t + 3 q  t  + 5 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a249
K11a248
K11a248
K11a250
K11a250