© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a246
K11a246
K11a248
K11a248
K11a247
Knotscape
This page is passe. Go here instead!

   The Knot K11a247

Visit K11a247's page at Knotilus!

Acknowledgement

K11a247 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X22,6,1,5 X20,8,21,7 X18,10,19,9 X16,12,17,11 X2,14,3,13 X12,16,13,15 X10,18,11,17 X8,20,9,19 X6,22,7,21

Gauss Code: {1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -8, 7, -2, 8, -6, 9, -5, 10, -4, 11, -3}

DT (Dowker-Thistlethwaite) Code: 4 14 22 20 18 16 2 12 10 8 6

Alexander Polynomial: 5t-1 - 9 + 5t

Conway Polynomial: 1 + 5z2

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {19, 2}

Jones Polynomial: q - q2 + 2q3 - 2q4 + 2q5 - 2q6 + 2q7 - 2q8 + 2q9 - q10 + q11 - q12

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q2 + q6 + q8 + q28 + q30 - q36 - q38

HOMFLY-PT Polynomial: - a-12 + a-10 + a-10z2 + a-8z2 + a-6z2 + a-4z2 + a-2 + a-2z2

Kauffman Polynomial: 5a-13z - 20a-13z3 + 21a-13z5 - 8a-13z7 + a-13z9 - a-12 + 11a-12z2 - 25a-12z4 + 22a-12z6 - 8a-12z8 + a-12z10 + 5a-11z - 24a-11z3 + 31a-11z5 - 14a-11z7 + 2a-11z9 - a-10 + 10a-10z2 - 19a-10z4 + 17a-10z6 - 7a-10z8 + a-10z10 - a-9z3 + 6a-9z5 - 5a-9z7 + a-9z9 + 3a-8z4 - 4a-8z6 + a-8z8 + a-7z3 - 3a-7z5 + a-7z7 - 2a-6z4 + a-6z6 - a-5z3 + a-5z5 + a-4z4 + a-3z3 - a-2 + a-2z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {5, 15}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11247. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 25           1
j = 23            
j = 21         11 
j = 19        1   
j = 17       11   
j = 15      11    
j = 13     11     
j = 11    11      
j = 9   11       
j = 7  11        
j = 5  1         
j = 311          
j = 11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 247]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 247]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[22, 6, 1, 5], X[20, 8, 21, 7], 
 
>   X[18, 10, 19, 9], X[16, 12, 17, 11], X[2, 14, 3, 13], X[12, 16, 13, 15], 
 
>   X[10, 18, 11, 17], X[8, 20, 9, 19], X[6, 22, 7, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 247]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -8, 7, -2, 8, -6, 9, -5, 10, 
 
>   -4, 11, -3]
In[5]:=
DTCode[Knot[11, Alternating, 247]]
Out[5]=   
DTCode[4, 14, 22, 20, 18, 16, 2, 12, 10, 8, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 247]][t]
Out[6]=   
     5
-9 + - + 5 t
     t
In[7]:=
Conway[Knot[11, Alternating, 247]][z]
Out[7]=   
       2
1 + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 247]}
In[9]:=
{KnotDet[Knot[11, Alternating, 247]], KnotSignature[Knot[11, Alternating, 247]]}
Out[9]=   
{19, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 247]][q]
Out[10]=   
     2      3      4      5      6      7      8      9    10    11    12
q - q  + 2 q  - 2 q  + 2 q  - 2 q  + 2 q  - 2 q  + 2 q  - q   + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 247]}
In[12]:=
A2Invariant[Knot[11, Alternating, 247]][q]
Out[12]=   
 2    6    8    28    30    36    38
q  + q  + q  + q   + q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 247]][a, z]
Out[13]=   
                      2     2    2    2    2
  -12    -10    -2   z     z    z    z    z
-a    + a    + a   + --- + -- + -- + -- + --
                      10    8    6    4    2
                     a     a    a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 247]][a, z]
Out[14]=   
                                     2       2    2       3       3    3    3
  -12    -10    -2   5 z   5 z   11 z    10 z    z    20 z    24 z    z    z
-a    - a    - a   + --- + --- + ----- + ----- + -- - ----- - ----- - -- + -- - 
                      13    11     12      10     2     13      11     9    7
                     a     a      a       a      a     a       a      a    a
 
     3    3       4       4      4      4    4       5       5      5      5
    z    z    25 z    19 z    3 z    2 z    z    21 z    31 z    6 z    3 z
>   -- + -- - ----- - ----- + ---- - ---- + -- + ----- + ----- + ---- - ---- + 
     5    3     12      10      8      6     4     13      11      9      7
    a    a     a       a       a      a     a     a       a       a      a
 
     5       6       6      6    6      7       7      7    7      8      8
    z    22 z    17 z    4 z    z    8 z    14 z    5 z    z    8 z    7 z
>   -- + ----- + ----- - ---- + -- - ---- - ----- - ---- + -- - ---- - ---- + 
     5     12      10      8     6    13      11      9     7    12     10
    a     a       a       a     a    a       a       a     a    a      a
 
     8    9       9    9    10    10
    z    z     2 z    z    z     z
>   -- + --- + ---- + -- + --- + ---
     8    13    11     9    12    10
    a    a     a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 247]], Vassiliev[3][Knot[11, Alternating, 247]]}
Out[15]=   
{5, 15}
In[16]:=
Kh[Knot[11, Alternating, 247]][q, t]
Out[16]=   
     3    3      5  2    7  2    7  3    9  3    9  4    11  4    11  5
q + q  + q  t + q  t  + q  t  + q  t  + q  t  + q  t  + q   t  + q   t  + 
 
     13  5    13  6    15  6    15  7    17  7    17  8    19  8    21  9
>   q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     21  10    25  11
>   q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a247
K11a246
K11a246
K11a248
K11a248