© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a240
K11a240
K11a242
K11a242
K11a241
Knotscape
This page is passe. Go here instead!

   The Knot K11a241

Visit K11a241's page at Knotilus!

Acknowledgement

K11a241 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X18,6,19,5 X20,8,21,7 X22,10,1,9 X16,12,17,11 X2,14,3,13 X10,16,11,15 X12,18,13,17 X8,20,9,19 X6,22,7,21

Gauss Code: {1, -7, 2, -1, 3, -11, 4, -10, 5, -8, 6, -9, 7, -2, 8, -6, 9, -3, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 14 18 20 22 16 2 10 12 8 6

Alexander Polynomial: 4t-3 - 12t-2 + 20t-1 - 23 + 20t - 12t2 + 4t3

Conway Polynomial: 1 + 8z2 + 12z4 + 4z6

Other knots with the same Alexander/Conway Polynomial: {K11a186, ...}

Determinant and Signature: {95, 6}

Jones Polynomial: q3 - 2q4 + 6q5 - 9q6 + 13q7 - 15q8 + 15q9 - 14q10 + 10q11 - 6q12 + 3q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {K11a186, ...}

A2 (sl(3)) Invariant: q10 - q12 + 3q14 + q18 + 3q20 - 2q22 + 3q24 - 2q26 - q28 - 3q32 + 2q34 - q36 + q40 - q42

HOMFLY-PT Polynomial: - 2a-12z2 - a-12z4 - 2a-10 - a-10z2 + 2a-10z4 + a-10z6 + a-8 + 6a-8z2 + 7a-8z4 + 2a-8z6 + 2a-6 + 5a-6z2 + 4a-6z4 + a-6z6

Kauffman Polynomial: - 2a-17z3 + a-17z5 + 2a-16z2 - 6a-16z4 + 3a-16z6 - 3a-15z + 9a-15z3 - 11a-15z5 + 5a-15z7 - a-14z2 + 7a-14z4 - 9a-14z6 + 5a-14z8 - 4a-13z + 12a-13z3 - 8a-13z5 + 3a-13z9 + a-12z2 + 6a-12z4 - 10a-12z6 + 5a-12z8 + a-12z10 - 6a-11z + 9a-11z3 - 2a-11z5 - 6a-11z7 + 5a-11z9 + 2a-10 - 4a-10z2 + 2a-10z4 - 6a-10z6 + 3a-10z8 + a-10z10 - 4a-9z + 10a-9z3 - 11a-9z5 + a-9z7 + 2a-9z9 + a-8 - 3a-8z2 + 5a-8z4 - 7a-8z6 + 3a-8z8 + a-7z + 2a-7z3 - 5a-7z5 + 2a-7z7 - 2a-6 + 5a-6z2 - 4a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {8, 22}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11241. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          2 
j = 25         41 
j = 23        62  
j = 21       84   
j = 19      76    
j = 17     88     
j = 15    57      
j = 13   48       
j = 11  25        
j = 9  4         
j = 712          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 241]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 241]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[18, 6, 19, 5], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[16, 12, 17, 11], X[2, 14, 3, 13], X[10, 16, 11, 15], 
 
>   X[12, 18, 13, 17], X[8, 20, 9, 19], X[6, 22, 7, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 241]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -11, 4, -10, 5, -8, 6, -9, 7, -2, 8, -6, 9, -3, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 241]]
Out[5]=   
DTCode[4, 14, 18, 20, 22, 16, 2, 10, 12, 8, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 241]][t]
Out[6]=   
      4    12   20              2      3
-23 + -- - -- + -- + 20 t - 12 t  + 4 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 241]][z]
Out[7]=   
       2       4      6
1 + 8 z  + 12 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 186], Knot[11, Alternating, 241]}
In[9]:=
{KnotDet[Knot[11, Alternating, 241]], KnotSignature[Knot[11, Alternating, 241]]}
Out[9]=   
{95, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 241]][q]
Out[10]=   
 3      4      5      6       7       8       9       10       11      12
q  - 2 q  + 6 q  - 9 q  + 13 q  - 15 q  + 15 q  - 14 q   + 10 q   - 6 q   + 
 
       13    14
>   3 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 186], Knot[11, Alternating, 241]}
In[12]:=
A2Invariant[Knot[11, Alternating, 241]][q]
Out[12]=   
 10    12      14    18      20      22      24      26    28      32      34
q   - q   + 3 q   + q   + 3 q   - 2 q   + 3 q   - 2 q   - q   - 3 q   + 2 q   - 
 
     36    40    42
>   q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 241]][a, z]
Out[13]=   
                    2    2       2      2    4       4      4      4    6
-2     -8   2    2 z    z     6 z    5 z    z     2 z    7 z    4 z    z
--- + a   + -- - ---- - --- + ---- + ---- - --- + ---- + ---- + ---- + --- + 
 10          6    12     10     8      6     12    10      8      6     10
a           a    a      a      a      a     a     a       a      a     a
 
       6    6
    2 z    z
>   ---- + --
      8     6
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 241]][a, z]
Out[14]=   
                                                 2    2     2       2      2
 2     -8   2    3 z   4 z   6 z   4 z   z    2 z    z     z     4 z    3 z
--- + a   - -- - --- - --- - --- - --- + -- + ---- - --- + --- - ---- - ---- + 
 10          6    15    13    11    9     7    16     14    12    10      8
a           a    a     a     a     a     a    a      a     a     a       a
 
       2      3      3       3      3       3      3      4      4      4
    5 z    2 z    9 z    12 z    9 z    10 z    2 z    6 z    7 z    6 z
>   ---- - ---- + ---- + ----- + ---- + ----- + ---- - ---- + ---- + ---- + 
      6     17     15      13     11      9       7     16     14     12
     a     a      a       a      a       a       a     a      a      a
 
       4      4      4    5        5      5      5       5      5      6
    2 z    5 z    4 z    z     11 z    8 z    2 z    11 z    5 z    3 z
>   ---- + ---- - ---- + --- - ----- - ---- - ---- - ----- - ---- + ---- - 
     10      8      6     17     15     13     11      9       7     16
    a       a      a     a      a      a      a       a       a     a
 
       6       6      6      6    6      7      7    7      7      8      8
    9 z    10 z    6 z    7 z    z    5 z    6 z    z    2 z    5 z    5 z
>   ---- - ----- - ---- - ---- + -- + ---- - ---- + -- + ---- + ---- + ---- + 
     14      12     10      8     6    15     11     9     7     14     12
    a       a      a       a     a    a      a      a     a     a      a
 
       8      8      9      9      9    10    10
    3 z    3 z    3 z    5 z    2 z    z     z
>   ---- + ---- + ---- + ---- + ---- + --- + ---
     10      8     13     11      9     12    10
    a       a     a      a       a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 241]], Vassiliev[3][Knot[11, Alternating, 241]]}
Out[15]=   
{8, 22}
In[16]:=
Kh[Knot[11, Alternating, 241]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3      13  4
q  + q  + 2 q  t + 4 q  t  + 2 q   t  + 5 q   t  + 4 q   t  + 8 q   t  + 
 
       15  4      15  5      17  5      17  6      19  6      19  7
>   5 q   t  + 7 q   t  + 8 q   t  + 8 q   t  + 7 q   t  + 6 q   t  + 
 
       21  7      21  8      23  8      23  9      25  9    25  10
>   8 q   t  + 4 q   t  + 6 q   t  + 2 q   t  + 4 q   t  + q   t   + 
 
       27  10    29  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a241
K11a240
K11a240
K11a242
K11a242