© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a239
K11a239
K11a241
K11a241
K11a240
Knotscape
This page is passe. Go here instead!

   The Knot K11a240

Visit K11a240's page at Knotilus!

Acknowledgement

K11a240 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X18,6,19,5 X20,8,21,7 X22,10,1,9 X16,12,17,11 X2,14,3,13 X10,16,11,15 X12,18,13,17 X6,20,7,19 X8,22,9,21

Gauss Code: {1, -7, 2, -1, 3, -10, 4, -11, 5, -8, 6, -9, 7, -2, 8, -6, 9, -3, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 14 18 20 22 16 2 10 12 6 8

Alexander Polynomial: 2t-4 - 5t-3 + 8t-2 - 10t-1 + 11 - 10t + 8t2 - 5t3 + 2t4

Conway Polynomial: 1 + 9z2 + 18z4 + 11z6 + 2z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {61, 8}

Jones Polynomial: q4 - q5 + 4q6 - 5q7 + 7q8 - 9q9 + 9q10 - 9q11 + 7q12 - 5q13 + 3q14 - q15

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q14 + 3q18 + q20 + 3q22 + q24 - q26 - 4q30 - 2q34 + q38 + q42 - q44

HOMFLY-PT Polynomial: a-12 - 3a-12z2 - 4a-12z4 - a-12z6 - 6a-10 - 5a-10z2 + 5a-10z4 + 5a-10z6 + a-10z8 + 6a-8 + 17a-8z2 + 17a-8z4 + 7a-8z6 + a-8z8

Kauffman Polynomial: a-19z3 - a-18z2 + 3a-18z4 + a-17z - 4a-17z3 + 5a-17z5 + a-16z2 - 7a-16z4 + 6a-16z6 + 2a-15z3 - 10a-15z5 + 6a-15z7 - a-14z2 + 4a-14z4 - 11a-14z6 + 5a-14z8 - a-13z + 5a-13z3 - 3a-13z5 - 6a-13z7 + 3a-13z9 + a-12 - a-12z2 + 12a-12z4 - 13a-12z6 + a-12z8 + a-12z10 - 7a-11z + 7a-11z3 + 13a-11z5 - 16a-11z7 + 4a-11z9 + 6a-10 - 15a-10z2 + 15a-10z4 - 3a-10z6 - 3a-10z8 + a-10z10 - 7a-9z + 9a-9z3 + a-9z5 - 4a-9z7 + a-9z9 + 6a-8 - 17a-8z2 + 17a-8z4 - 7a-8z6 + a-8z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {9, 25}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=8 is the signature of 11240. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 31           1
j = 29          2 
j = 27         31 
j = 25        42  
j = 23       53   
j = 21      44    
j = 19     55     
j = 17    24      
j = 15   35       
j = 13  12        
j = 11  3         
j = 911          
j = 71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 240]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 240]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[18, 6, 19, 5], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[16, 12, 17, 11], X[2, 14, 3, 13], X[10, 16, 11, 15], 
 
>   X[12, 18, 13, 17], X[6, 20, 7, 19], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 240]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -10, 4, -11, 5, -8, 6, -9, 7, -2, 8, -6, 9, -3, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 240]]
Out[5]=   
DTCode[4, 14, 18, 20, 22, 16, 2, 10, 12, 6, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 240]][t]
Out[6]=   
     2    5    8    10             2      3      4
11 + -- - -- + -- - -- - 10 t + 8 t  - 5 t  + 2 t
      4    3    2   t
     t    t    t
In[7]:=
Conway[Knot[11, Alternating, 240]][z]
Out[7]=   
       2       4       6      8
1 + 9 z  + 18 z  + 11 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 240]}
In[9]:=
{KnotDet[Knot[11, Alternating, 240]], KnotSignature[Knot[11, Alternating, 240]]}
Out[9]=   
{61, 8}
In[10]:=
J=Jones[Knot[11, Alternating, 240]][q]
Out[10]=   
 4    5      6      7      8      9      10      11      12      13      14
q  - q  + 4 q  - 5 q  + 7 q  - 9 q  + 9 q   - 9 q   + 7 q   - 5 q   + 3 q   - 
 
     15
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 240]}
In[12]:=
A2Invariant[Knot[11, Alternating, 240]][q]
Out[12]=   
 14      18    20      22    24    26      30      34    38    42    44
q   + 3 q   + q   + 3 q   + q   - q   - 4 q   - 2 q   + q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 240]][a, z]
Out[13]=   
                     2      2       2      4      4       4    6       6
 -12    6    6    3 z    5 z    17 z    4 z    5 z    17 z    z     5 z
a    - --- + -- - ---- - ---- + ----- - ---- + ---- + ----- - --- + ---- + 
        10    8    12     10      8      12     10      8      12    10
       a     a    a      a       a      a      a       a      a     a
 
       6    8     8
    7 z    z     z
>   ---- + --- + --
      8     10    8
     a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 240]][a, z]
Out[14]=   
                                           2     2     2     2        2
 -12    6    6     z     z    7 z   7 z   z     z     z     z     15 z
a    + --- + -- + --- - --- - --- - --- - --- + --- - --- - --- - ----- - 
        10    8    17    13    11    9     18    16    14    12     10
       a     a    a     a     a     a     a     a     a     a      a
 
        2    3       3      3      3      3      3      4      4      4
    17 z    z     4 z    2 z    5 z    7 z    9 z    3 z    7 z    4 z
>   ----- + --- - ---- + ---- + ---- + ---- + ---- + ---- - ---- + ---- + 
      8      19    17     15     13     11      9     18     16     14
     a      a     a      a      a      a       a     a      a      a
 
        4       4       4      5       5      5       5    5      6       6
    12 z    15 z    17 z    5 z    10 z    3 z    13 z    z    6 z    11 z
>   ----- + ----- + ----- + ---- - ----- - ---- + ----- + -- + ---- - ----- - 
      12      10      8      17      15     13      11     9    16      14
     a       a       a      a       a      a       a      a    a       a
 
        6      6      6      7      7       7      7      8    8       8    8
    13 z    3 z    7 z    6 z    6 z    16 z    4 z    5 z    z     3 z    z
>   ----- - ---- - ---- + ---- - ---- - ----- - ---- + ---- + --- - ---- + -- + 
      12     10      8     15     13      11      9     14     12    10     8
     a      a       a     a      a       a       a     a      a     a      a
 
       9      9    9    10    10
    3 z    4 z    z    z     z
>   ---- + ---- + -- + --- + ---
     13     11     9    12    10
    a      a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 240]], Vassiliev[3][Knot[11, Alternating, 240]]}
Out[15]=   
{9, 25}
In[16]:=
Kh[Knot[11, Alternating, 240]][q, t]
Out[16]=   
 7    9    9        11  2    13  2      13  3      15  3      15  4
q  + q  + q  t + 3 q   t  + q   t  + 2 q   t  + 3 q   t  + 5 q   t  + 
 
       17  4      17  5      19  5      19  6      21  6      21  7
>   2 q   t  + 4 q   t  + 5 q   t  + 5 q   t  + 4 q   t  + 4 q   t  + 
 
       23  7      23  8      25  8      25  9      27  9    27  10
>   5 q   t  + 3 q   t  + 4 q   t  + 2 q   t  + 3 q   t  + q   t   + 
 
       29  10    31  11
>   2 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a240
K11a239
K11a239
K11a241
K11a241