© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a238
K11a238
K11a240
K11a240
K11a239
Knotscape
This page is passe. Go here instead!

   The Knot K11a239

Visit K11a239's page at Knotilus!

Acknowledgement

K11a239 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X18,5,19,6 X20,8,21,7 X22,9,1,10 X6,12,7,11 X2,14,3,13 X8,15,9,16 X10,18,11,17 X12,19,13,20 X16,22,17,21

Gauss Code: {1, -7, 2, -1, 3, -6, 4, -8, 5, -9, 6, -10, 7, -2, 8, -11, 9, -3, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 14 18 20 22 6 2 8 10 12 16

Alexander Polynomial: - t-4 + 7t-3 - 22t-2 + 42t-1 - 51 + 42t - 22t2 + 7t3 - t4

Conway Polynomial: 1 + z2 - z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {195, 2}

Jones Polynomial: q-3 - 5q-2 + 12q-1 - 20 + 28q - 31q2 + 32q3 - 28q4 + 20q5 - 12q6 + 5q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 - 3q-6 + 4q-4 - 3q-2 - 1 + 6q2 - 5q4 + 8q6 - 3q8 + q10 + q12 - 6q14 + 5q16 - 3q18 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6z2 - a-6z4 - a-4 + 3a-4z2 + 5a-4z4 + 2a-4z6 + 2a-2 - 2a-2z2 - 6a-2z4 - 4a-2z6 - a-2z8 + z2 + 2z4 + z6

Kauffman Polynomial: a-9z5 - 3a-8z4 + 5a-8z6 + 6a-7z3 - 14a-7z5 + 12a-7z7 - 3a-6z2 + 13a-6z4 - 24a-6z6 + 17a-6z8 + a-5z + 12a-5z3 - 21a-5z5 - 4a-5z7 + 13a-5z9 - a-4 - 8a-4z2 + 45a-4z4 - 72a-4z6 + 29a-4z8 + 4a-4z10 + a-3z + 10a-3z3 - 6a-3z5 - 33a-3z7 + 24a-3z9 - 2a-2 - 8a-2z2 + 45a-2z4 - 66a-2z6 + 23a-2z8 + 4a-2z10 + 8a-1z3 - 8a-1z5 - 12a-1z7 + 11a-1z9 - 3z2 + 15z4 - 22z6 + 11z8 + 4az3 - 8az5 + 5az7 - a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11239. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          4 
j = 13         81 
j = 11        124  
j = 9       168   
j = 7      1612    
j = 5     1516     
j = 3    1316      
j = 1   816       
j = -1  412        
j = -3 18         
j = -5 4          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 239]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 239]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[18, 5, 19, 6], X[20, 8, 21, 7], 
 
>   X[22, 9, 1, 10], X[6, 12, 7, 11], X[2, 14, 3, 13], X[8, 15, 9, 16], 
 
>   X[10, 18, 11, 17], X[12, 19, 13, 20], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 239]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -6, 4, -8, 5, -9, 6, -10, 7, -2, 8, -11, 9, -3, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 239]]
Out[5]=   
DTCode[4, 14, 18, 20, 22, 6, 2, 8, 10, 12, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 239]][t]
Out[6]=   
       -4   7    22   42              2      3    4
-51 - t   + -- - -- + -- + 42 t - 22 t  + 7 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 239]][z]
Out[7]=   
     2    6    8
1 + z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 239]}
In[9]:=
{KnotDet[Knot[11, Alternating, 239]], KnotSignature[Knot[11, Alternating, 239]]}
Out[9]=   
{195, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 239]][q]
Out[10]=   
       -3   5    12              2       3       4       5       6      7    8
-20 + q   - -- + -- + 28 q - 31 q  + 32 q  - 28 q  + 20 q  - 12 q  + 5 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 239]}
In[12]:=
A2Invariant[Knot[11, Alternating, 239]][q]
Out[12]=   
      -8   3    4    3       2      4      6      8    10    12      14
-1 + q   - -- + -- - -- + 6 q  - 5 q  + 8 q  - 3 q  + q   + q   - 6 q   + 
            6    4    2
           q    q    q
 
       16      18      22    24
>   5 q   - 3 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 239]][a, z]
Out[13]=   
                  2      2      2           4      4      4           6
  -4   2     2   z    3 z    2 z       4   z    5 z    6 z     6   2 z
-a   + -- + z  - -- + ---- - ---- + 2 z  - -- + ---- - ---- + z  + ---- - 
        2         6     4      2            6     4      2           4
       a         a     a      a            a     a      a           a
 
       6    8
    4 z    z
>   ---- - --
      2     2
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 239]][a, z]
Out[14]=   
                                2      2      2      3       3       3      3
  -4   2    z    z       2   3 z    8 z    8 z    6 z    12 z    10 z    8 z
-a   - -- + -- + -- - 3 z  - ---- - ---- - ---- + ---- + ----- + ----- + ---- + 
        2    5    3            6      4      2      7      5       3      a
       a    a    a            a      a      a      a      a       a
 
                        4       4       4       4            5       5
         3       4   3 z    13 z    45 z    45 z     2  4   z    14 z
>   4 a z  + 15 z  - ---- + ----- + ----- + ----- - a  z  + -- - ----- - 
                       8      6       4       2              9     7
                      a      a       a       a              a     a
 
        5      5      5                       6       6       6       6
    21 z    6 z    8 z         5       6   5 z    24 z    72 z    66 z
>   ----- - ---- - ---- - 8 a z  - 22 z  + ---- - ----- - ----- - ----- + 
      5       3     a                        8      6       4       2
     a       a                              a      a       a       a
 
                7      7       7       7                        8       8
     2  6   12 z    4 z    33 z    12 z         7       8   17 z    29 z
>   a  z  + ----- - ---- - ----- - ----- + 5 a z  + 11 z  + ----- + ----- + 
              7       5      3       a                        6       4
             a       a      a                                a       a
 
        8       9       9       9      10      10
    23 z    13 z    24 z    11 z    4 z     4 z
>   ----- + ----- + ----- + ----- + ----- + -----
      2       5       3       a       4       2
     a       a       a               a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 239]], Vassiliev[3][Knot[11, Alternating, 239]]}
Out[15]=   
{1, 1}
In[16]:=
Kh[Knot[11, Alternating, 239]][q, t]
Out[16]=   
           3     1       4       1       8      4     12    8 q       3
16 q + 13 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 16 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2       7  3       9  3      9  4       11  4
>   15 q  t + 16 q  t  + 16 q  t  + 12 q  t  + 16 q  t  + 8 q  t  + 12 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   4 q   t  + 8 q   t  + q   t  + 4 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a239
K11a238
K11a238
K11a240
K11a240