© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a241
K11a241
K11a243
K11a243
K11a242
Knotscape
This page is passe. Go here instead!

   The Knot K11a242

Visit K11a242's page at Knotilus!

Acknowledgement

K11a242 as Morse Link
DrawMorseLink

PD Presentation: X4251 X14,4,15,3 X18,6,19,5 X20,8,21,7 X22,10,1,9 X16,12,17,11 X2,14,3,13 X12,16,13,15 X10,18,11,17 X6,20,7,19 X8,22,9,21

Gauss Code: {1, -7, 2, -1, 3, -10, 4, -11, 5, -9, 6, -8, 7, -2, 8, -6, 9, -3, 10, -4, 11, -5}

DT (Dowker-Thistlethwaite) Code: 4 14 18 20 22 16 2 12 10 6 8

Alexander Polynomial: 3t-3 - 7t-2 + 9t-1 - 9 + 9t - 7t2 + 3t3

Conway Polynomial: 1 + 8z2 + 11z4 + 3z6

Other knots with the same Alexander/Conway Polynomial: {K11n93, ...}

Determinant and Signature: {47, 6}

Jones Polynomial: q3 - q4 + 3q5 - 4q6 + 6q7 - 7q8 + 7q9 - 7q10 + 5q11 - 3q12 + 2q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 + 2q14 + q16 + q18 + q20 - q22 + q24 - q26 - q28 - q32 + q34 - q42

HOMFLY-PT Polynomial: - a-12 - 3a-12z2 - a-12z4 + a-10 + 4a-10z2 + 4a-10z4 + a-10z6 - 2a-8 + 3a-8z4 + a-8z6 + 3a-6 + 7a-6z2 + 5a-6z4 + a-6z6

Kauffman Polynomial: a-17z - 3a-17z3 + a-17z5 + 3a-16z2 - 6a-16z4 + 2a-16z6 + 2a-15z3 - 5a-15z5 + 2a-15z7 - a-14z2 + 6a-14z4 - 6a-14z6 + 2a-14z8 + 2a-13z - 10a-13z3 + 17a-13z5 - 9a-13z7 + 2a-13z9 - a-12 + 3a-12z2 - 3a-12z4 + 7a-12z6 - 4a-12z8 + a-12z10 + 2a-11z - 18a-11z3 + 29a-11z5 - 15a-11z7 + 3a-11z9 - a-10 + 5a-10z2 - 13a-10z4 + 12a-10z6 - 5a-10z8 + a-10z10 + a-9z - 3a-9z3 + 3a-9z5 - 3a-9z7 + a-9z9 - 2a-8 + 5a-8z2 - 3a-8z4 - 2a-8z6 + a-8z8 + 2a-7z - 3a-7z5 + a-7z7 - 3a-6 + 7a-6z2 - 5a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {8, 23}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11242. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          1 
j = 25         21 
j = 23        31  
j = 21       42   
j = 19      33    
j = 17     44     
j = 15    23      
j = 13   24       
j = 11  12        
j = 9  2         
j = 711          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 242]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 242]]
Out[3]=   
PD[X[4, 2, 5, 1], X[14, 4, 15, 3], X[18, 6, 19, 5], X[20, 8, 21, 7], 
 
>   X[22, 10, 1, 9], X[16, 12, 17, 11], X[2, 14, 3, 13], X[12, 16, 13, 15], 
 
>   X[10, 18, 11, 17], X[6, 20, 7, 19], X[8, 22, 9, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 242]]
Out[4]=   
GaussCode[1, -7, 2, -1, 3, -10, 4, -11, 5, -9, 6, -8, 7, -2, 8, -6, 9, -3, 10, 
 
>   -4, 11, -5]
In[5]:=
DTCode[Knot[11, Alternating, 242]]
Out[5]=   
DTCode[4, 14, 18, 20, 22, 16, 2, 12, 10, 6, 8]
In[6]:=
alex = Alexander[Knot[11, Alternating, 242]][t]
Out[6]=   
     3    7    9            2      3
-9 + -- - -- + - + 9 t - 7 t  + 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 242]][z]
Out[7]=   
       2       4      6
1 + 8 z  + 11 z  + 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 242], Knot[11, NonAlternating, 93]}
In[9]:=
{KnotDet[Knot[11, Alternating, 242]], KnotSignature[Knot[11, Alternating, 242]]}
Out[9]=   
{47, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 242]][q]
Out[10]=   
 3    4      5      6      7      8      9      10      11      12      13    14
q  - q  + 3 q  - 4 q  + 6 q  - 7 q  + 7 q  - 7 q   + 5 q   - 3 q   + 2 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 242]}
In[12]:=
A2Invariant[Knot[11, Alternating, 242]][q]
Out[12]=   
 10      14    16    18    20    22    24    26    28    32    34    42
q   + 2 q   + q   + q   + q   - q   + q   - q   - q   - q   + q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 242]][a, z]
Out[13]=   
                            2      2      2    4       4      4      4    6
  -12    -10   2    3    3 z    4 z    7 z    z     4 z    3 z    5 z    z
-a    + a    - -- + -- - ---- + ---- + ---- - --- + ---- + ---- + ---- + --- + 
                8    6    12     10      6     12    10      8      6     10
               a    a    a      a       a     a     a       a      a     a
 
     6    6
    z    z
>   -- + --
     8    6
    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 242]][a, z]
Out[14]=   
                                                         2    2       2
  -12    -10   2    3     z    2 z   2 z   z    2 z   3 z    z     3 z
-a    - a    - -- - -- + --- + --- + --- + -- + --- + ---- - --- + ---- + 
                8    6    17    13    11    9    7     16     14    12
               a    a    a     a     a     a    a     a      a     a
 
       2      2      2      3      3       3       3      3      4      4
    5 z    5 z    7 z    3 z    2 z    10 z    18 z    3 z    6 z    6 z
>   ---- + ---- + ---- - ---- + ---- - ----- - ----- - ---- - ---- + ---- - 
     10      8      6     17     15      13      11      9     16     14
    a       a      a     a      a       a       a       a     a      a
 
       4       4      4      4    5       5       5       5      5      5
    3 z    13 z    3 z    5 z    z     5 z    17 z    29 z    3 z    3 z
>   ---- - ----- - ---- - ---- + --- - ---- + ----- + ----- + ---- - ---- + 
     12      10      8      6     17    15      13      11      9      7
    a       a       a      a     a     a       a       a       a      a
 
       6      6      6       6      6    6      7      7       7      7    7
    2 z    6 z    7 z    12 z    2 z    z    2 z    9 z    15 z    3 z    z
>   ---- - ---- + ---- + ----- - ---- + -- + ---- - ---- - ----- - ---- + -- + 
     16     14     12      10      8     6    15     13      11      9     7
    a      a      a       a       a     a    a      a       a       a     a
 
       8      8      8    8      9      9    9    10    10
    2 z    4 z    5 z    z    2 z    3 z    z    z     z
>   ---- - ---- - ---- + -- + ---- + ---- + -- + --- + ---
     14     12     10     8    13     11     9    12    10
    a      a      a      a    a      a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 242]], Vassiliev[3][Knot[11, Alternating, 242]]}
Out[15]=   
{8, 23}
In[16]:=
Kh[Knot[11, Alternating, 242]][q, t]
Out[16]=   
 5    7    7        9  2    11  2      11  3      13  3      13  4      15  4
q  + q  + q  t + 2 q  t  + q   t  + 2 q   t  + 2 q   t  + 4 q   t  + 2 q   t  + 
 
       15  5      17  5      17  6      19  6      19  7      21  7
>   3 q   t  + 4 q   t  + 4 q   t  + 3 q   t  + 3 q   t  + 4 q   t  + 
 
       21  8      23  8    23  9      25  9    25  10    27  10    29  11
>   2 q   t  + 3 q   t  + q   t  + 2 q   t  + q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a242
K11a241
K11a241
K11a243
K11a243