© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a1
K11a1
K11a3
K11a3
K11a2
Knotscape
This page is passe. Go here instead!

   The Knot K11a2

Visit K11a2's page at Knotilus!

Acknowledgement

K11a2 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X14,8,15,7 X2,9,3,10 X18,12,19,11 X6,14,7,13 X20,16,21,15 X12,18,13,17 X22,20,1,19 X16,22,17,21

Gauss Code: {1, -5, 2, -1, 3, -7, 4, -2, 5, -3, 6, -9, 7, -4, 8, -11, 9, -6, 10, -8, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 10 14 2 18 6 20 12 22 16

Alexander Polynomial: - 3t-3 + 15t-2 - 31t-1 + 39 - 31t + 15t2 - 3t3

Conway Polynomial: 1 + 2z2 - 3z4 - 3z6

Other knots with the same Alexander/Conway Polynomial: {K11a116, ...}

Determinant and Signature: {137, 4}

Jones Polynomial: 1 - 3q + 8q2 - 13q3 + 19q4 - 22q5 + 22q6 - 20q7 + 15q8 - 9q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {K11a116, ...}

A2 (sl(3)) Invariant: 1 - q2 + q4 + 3q6 - 3q8 + 5q10 - q12 - q14 + 2q16 - 5q18 + 3q20 - 3q22 + q24 + 3q26 - 3q28 + 2q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 3a-8 + 6a-8z2 + 3a-8z4 - 4a-6 - 7a-6z2 - 6a-6z4 - 2a-6z6 + 2a-4 + 2a-4z2 - a-4z4 - a-4z6 + a-2 + 2a-2z2 + a-2z4

Kauffman Polynomial: - a-13z3 + a-13z5 + 2a-12z2 - 5a-12z4 + 4a-12z6 - 3a-11z + 8a-11z3 - 12a-11z5 + 8a-11z7 + a-10 - a-10z2 + 2a-10z4 - 10a-10z6 + 9a-10z8 - 8a-9z + 30a-9z3 - 36a-9z5 + 10a-9z7 + 5a-9z9 + 3a-8 - 14a-8z2 + 35a-8z4 - 45a-8z6 + 20a-8z8 + a-8z10 - 10a-7z + 33a-7z3 - 33a-7z5 + 9a-7z9 + 4a-6 - 18a-6z2 + 38a-6z4 - 42a-6z6 + 16a-6z8 + a-6z10 - 6a-5z + 17a-5z3 - 17a-5z5 + a-5z7 + 4a-5z9 + 2a-4 - 4a-4z2 + 7a-4z4 - 10a-4z6 + 5a-4z8 - a-3z + 5a-3z3 - 7a-3z5 + 3a-3z7 - a-2 + 3a-2z2 - 3a-2z4 + a-2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 112. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23           1
j = 21          3 
j = 19         61 
j = 17        93  
j = 15       116   
j = 13      119    
j = 11     1111     
j = 9    811      
j = 7   511       
j = 5  38        
j = 3 16         
j = 1 2          
j = -11           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 2]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 2]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 8, 15, 7], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[6, 14, 7, 13], X[20, 16, 21, 15], 
 
>   X[12, 18, 13, 17], X[22, 20, 1, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 2]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -7, 4, -2, 5, -3, 6, -9, 7, -4, 8, -11, 9, -6, 10, 
 
>   -8, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 2]]
Out[5]=   
DTCode[4, 8, 10, 14, 2, 18, 6, 20, 12, 22, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 2]][t]
Out[6]=   
     3    15   31              2      3
39 - -- + -- - -- - 31 t + 15 t  - 3 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 2]][z]
Out[7]=   
       2      4      6
1 + 2 z  - 3 z  - 3 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 2], Knot[11, Alternating, 116]}
In[9]:=
{KnotDet[Knot[11, Alternating, 2]], KnotSignature[Knot[11, Alternating, 2]]}
Out[9]=   
{137, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 2]][q]
Out[10]=   
             2       3       4       5       6       7       8      9      10
1 - 3 q + 8 q  - 13 q  + 19 q  - 22 q  + 22 q  - 20 q  + 15 q  - 9 q  + 4 q   - 
 
     11
>   q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 2], Knot[11, Alternating, 116]}
In[12]:=
A2Invariant[Knot[11, Alternating, 2]][q]
Out[12]=   
     2    4      6      8      10    12    14      16      18      20      22
1 - q  + q  + 3 q  - 3 q  + 5 q   - q   - q   + 2 q   - 5 q   + 3 q   - 3 q   + 
 
     24      26      28      30    34
>   q   + 3 q   - 3 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 2]][a, z]
Out[13]=   
                              2       2      2      2      2      4      4
  -10   3    4    2     -2   z     6 z    7 z    2 z    2 z    3 z    6 z
-a    + -- - -- + -- + a   - --- + ---- - ---- + ---- + ---- + ---- - ---- - 
         8    6    4          10     8      6      4      2      8      6
        a    a    a          a      a      a      a      a      a      a
 
     4    4      6    6
    z    z    2 z    z
>   -- + -- - ---- - --
     4    2     6     4
    a    a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 2]][a, z]
Out[14]=   
                                                             2    2        2
 -10   3    4    2     -2   3 z   8 z   10 z   6 z   z    2 z    z     14 z
a    + -- + -- + -- - a   - --- - --- - ---- - --- - -- + ---- - --- - ----- - 
        8    6    4          11    9      7     5     3    12     10     8
       a    a    a          a     a      a     a     a    a      a      a
 
        2      2      2    3       3       3       3       3      3      4
    18 z    4 z    3 z    z     8 z    30 z    33 z    17 z    5 z    5 z
>   ----- - ---- + ---- - --- + ---- + ----- + ----- + ----- + ---- - ---- + 
      6       4      2     13    11      9       7       5       3     12
     a       a      a     a     a       a       a       a       a     a
 
       4       4       4      4      4    5        5       5       5       5
    2 z    35 z    38 z    7 z    3 z    z     12 z    36 z    33 z    17 z
>   ---- + ----- + ----- + ---- - ---- + --- - ----- - ----- - ----- - ----- - 
     10      8       6       4      2     13     11      9       7       5
    a       a       a       a      a     a      a       a       a       a
 
       5      6       6       6       6       6    6      7       7    7
    7 z    4 z    10 z    45 z    42 z    10 z    z    8 z    10 z    z
>   ---- + ---- - ----- - ----- - ----- - ----- + -- + ---- + ----- + -- + 
      3     12      10      8       6       4      2    11      9      5
     a     a       a       a       a       a      a    a       a      a
 
       7      8       8       8      8      9      9      9    10    10
    3 z    9 z    20 z    16 z    5 z    5 z    9 z    4 z    z     z
>   ---- + ---- + ----- + ----- + ---- + ---- + ---- + ---- + --- + ---
      3     10      8       6       4      9      7      5     8     6
     a     a       a       a       a      a      a      a     a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 2]], Vassiliev[3][Knot[11, Alternating, 2]]}
Out[15]=   
{2, 4}
In[16]:=
Kh[Knot[11, Alternating, 2]][q, t]
Out[16]=   
                            3
   3      5    1     2 q   q       5        7         7  2      9  2
6 q  + 3 q  + ---- + --- + -- + 8 q  t + 5 q  t + 11 q  t  + 8 q  t  + 
                 2    t    t
              q t
 
        9  3       11  3       11  4       13  4      13  5       15  5
>   11 q  t  + 11 q   t  + 11 q   t  + 11 q   t  + 9 q   t  + 11 q   t  + 
 
       15  6      17  6      17  7      19  7    19  8      21  8    23  9
>   6 q   t  + 9 q   t  + 3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a2
K11a1
K11a1
K11a3
K11a3