© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a2
K11a2
K11a4
K11a4
K11a3
Knotscape
This page is passe. Go here instead!

   The Knot K11a3

Visit K11a3's page at Knotilus!

Acknowledgement

K11a3 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X14,8,15,7 X2,9,3,10 X18,11,19,12 X6,14,7,13 X20,15,21,16 X22,17,1,18 X12,19,13,20 X16,21,17,22

Gauss Code: {1, -5, 2, -1, 3, -7, 4, -2, 5, -3, 6, -10, 7, -4, 8, -11, 9, -6, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 14 2 18 6 20 22 12 16

Alexander Polynomial: - t-4 + 5t-3 - 13t-2 + 24t-1 - 29 + 24t - 13t2 + 5t3 - t4

Conway Polynomial: 1 + z2 - 3z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {115, -2}

Jones Polynomial: - q-8 + 3q-7 - 7q-6 + 12q-5 - 16q-4 + 19q-3 - 18q-2 + 16q-1 - 12 + 7q - 3q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {K11a51, K11a331, ...}

A2 (sl(3)) Invariant: - q-24 - q-20 - 2q-18 + 4q-16 - q-14 + 3q-12 + 2q-10 - 2q-8 + 3q-6 - 5q-4 + 2q-2 - 1 - q2 + 3q4 - q6 + q8

HOMFLY-PT Polynomial: 3 + 6z2 + 4z4 + z6 - 7a2 - 17a2z2 - 15a2z4 - 6a2z6 - a2z8 + 8a4 + 15a4z2 + 9a4z4 + 2a4z6 - 3a6 - 3a6z2 - a6z4

Kauffman Polynomial: 2a-2z2 - 3a-2z4 + a-2z6 - 2a-1z + 6a-1z3 - 8a-1z5 + 3a-1z7 + 3 - 8z2 + 12z4 - 13z6 + 5z8 - 4az + 9az3 - 7az5 - 4az7 + 4az9 + 7a2 - 30a2z2 + 49a2z4 - 40a2z6 + 12a2z8 + a2z10 - 4a3z + 10a3z3 - 2a3z5 - 11a3z7 + 8a3z9 + 8a4 - 30a4z2 + 48a4z4 - 38a4z6 + 13a4z8 + a4z10 - 4a5z + 12a5z3 - 11a5z5 + a5z7 + 4a5z9 + 3a6 - 8a6z2 + 9a6z4 - 9a6z6 + 6a6z8 - a7z + 3a7z3 - 7a7z5 + 5a7z7 + 2a8z2 - 5a8z4 + 3a8z6 + a9z - 2a9z3 + a9z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 113. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7           1
j = 5          2 
j = 3         51 
j = 1        72  
j = -1       95   
j = -3      108    
j = -5     98     
j = -7    710      
j = -9   59       
j = -11  27        
j = -13 15         
j = -15 2          
j = -171           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 3]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 3]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 8, 15, 7], 
 
>   X[2, 9, 3, 10], X[18, 11, 19, 12], X[6, 14, 7, 13], X[20, 15, 21, 16], 
 
>   X[22, 17, 1, 18], X[12, 19, 13, 20], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 3]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -7, 4, -2, 5, -3, 6, -10, 7, -4, 8, -11, 9, -6, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 3]]
Out[5]=   
DTCode[4, 8, 10, 14, 2, 18, 6, 20, 22, 12, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 3]][t]
Out[6]=   
       -4   5    13   24              2      3    4
-29 - t   + -- - -- + -- + 24 t - 13 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 3]][z]
Out[7]=   
     2      4      6    8
1 + z  - 3 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 3]}
In[9]:=
{KnotDet[Knot[11, Alternating, 3]], KnotSignature[Knot[11, Alternating, 3]]}
Out[9]=   
{115, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 3]][q]
Out[10]=   
       -8   3    7    12   16   19   18   16            2    3
-12 - q   + -- - -- + -- - -- + -- - -- + -- + 7 q - 3 q  + q
             7    6    5    4    3    2   q
            q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 3], Knot[11, Alternating, 51], 
 
>   Knot[11, Alternating, 331]}
In[12]:=
A2Invariant[Knot[11, Alternating, 3]][q]
Out[12]=   
      -24    -20    2     4     -14    3     2    2    3    5    2     2
-1 - q    - q    - --- + --- - q    + --- + --- - -- + -- - -- + -- - q  + 
                    18    16           12    10    8    6    4    2
                   q     q            q     q     q    q    q    q
 
       4    6    8
>   3 q  - q  + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 3]][a, z]
Out[13]=   
       2      4      6      2       2  2       4  2      6  2      4
3 - 7 a  + 8 a  - 3 a  + 6 z  - 17 a  z  + 15 a  z  - 3 a  z  + 4 z  - 
 
        2  4      4  4    6  4    6      2  6      4  6    2  8
>   15 a  z  + 9 a  z  - a  z  + z  - 6 a  z  + 2 a  z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 3]][a, z]
Out[14]=   
       2      4      6   2 z              3        5      7      9        2
3 + 7 a  + 8 a  + 3 a  - --- - 4 a z - 4 a  z - 4 a  z - a  z + a  z - 8 z  + 
                          a
 
       2                                                3
    2 z        2  2       4  2      6  2      8  2   6 z         3       3  3
>   ---- - 30 a  z  - 30 a  z  - 8 a  z  + 2 a  z  + ---- + 9 a z  + 10 a  z  + 
      2                                               a
     a
 
                                              4
        5  3      7  3      9  3       4   3 z        2  4       4  4
>   12 a  z  + 3 a  z  - 2 a  z  + 12 z  - ---- + 49 a  z  + 48 a  z  + 
                                             2
                                            a
 
                           5
       6  4      8  4   8 z         5      3  5       5  5      7  5    9  5
>   9 a  z  - 5 a  z  - ---- - 7 a z  - 2 a  z  - 11 a  z  - 7 a  z  + a  z  - 
                         a
 
             6                                                7
        6   z        2  6       4  6      6  6      8  6   3 z         7
>   13 z  + -- - 40 a  z  - 38 a  z  - 9 a  z  + 3 a  z  + ---- - 4 a z  - 
             2                                              a
            a
 
        3  7    5  7      7  7      8       2  8       4  8      6  8
>   11 a  z  + a  z  + 5 a  z  + 5 z  + 12 a  z  + 13 a  z  + 6 a  z  + 
 
         9      3  9      5  9    2  10    4  10
>   4 a z  + 8 a  z  + 4 a  z  + a  z   + a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 3]], Vassiliev[3][Knot[11, Alternating, 3]]}
Out[15]=   
{1, -4}
In[16]:=
Kh[Knot[11, Alternating, 3]][q, t]
Out[16]=   
8    9     1        2        1        5        2        7        5       9
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 3   q    17  7    15  6    13  6    13  5    11  5    11  4    9  4    9  3
q        q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10       9      8      10    5 t                2      3  2
>   ----- + ----- + ----- + ---- + ---- + --- + 7 q t + 2 q t  + 5 q  t  + 
     7  3    7  2    5  2    5      3      q
    q  t    q  t    q  t    q  t   q  t
 
     3  3      5  3    7  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a3
K11a2
K11a2
K11a4
K11a4