© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n185
K11n185
K11a2
K11a2
K11a1
Knotscape
This page is passe. Go here instead!

   The Knot K11a1

Visit K11a1's page at Knotilus!

Acknowledgement

K11a1 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X10,6,11,5 X14,7,15,8 X2,9,3,10 X16,12,17,11 X20,14,21,13 X6,15,7,16 X22,18,1,17 X12,20,13,19 X18,22,19,21

Gauss Code: {1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -10, 7, -4, 8, -6, 9, -11, 10, -7, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 10 14 2 16 20 6 22 12 18

Alexander Polynomial: 2t-3 - 12t-2 + 30t-1 - 39 + 30t - 12t2 + 2t3

Conway Polynomial: 1 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a122, K11a149, ...}

Determinant and Signature: {127, 2}

Jones Polynomial: q-3 - 3q-2 + 7q-1 - 12 + 17q - 20q2 + 21q3 - 18q4 + 14q5 - 9q6 + 4q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a149, ...}

A2 (sl(3)) Invariant: q-10 - q-6 + 3q-4 - 2q-2 - 1 + 3q2 - 4q4 + 3q6 - q8 + q10 + 3q12 - 3q14 + 4q16 - 2q18 - 2q20 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6 - a-6z2 - a-6z4 + 2a-4 + 3a-4z2 + 2a-4z4 + a-4z6 + a-2z4 + a-2z6 - 1 - 3z2 - 2z4 + a2 + a2z2

Kauffman Polynomial: - a-9z3 + a-9z5 + a-8z2 - 5a-8z4 + 4a-8z6 - 2a-7z + 7a-7z3 - 13a-7z5 + 8a-7z7 + a-6 - 4a-6z2 + 9a-6z4 - 14a-6z6 + 9a-6z8 - 4a-5z + 16a-5z3 - 20a-5z5 + 4a-5z7 + 5a-5z9 + 2a-4 - 10a-4z2 + 28a-4z4 - 36a-4z6 + 16a-4z8 + a-4z10 - 4a-3z + 16a-3z3 - 16a-3z5 - 4a-3z7 + 8a-3z9 - 3a-2z2 + 15a-2z4 - 25a-2z6 + 11a-2z8 + a-2z10 - 4a-1z + 15a-1z3 - 18a-1z5 + 3a-1z7 + 3a-1z9 - 1 + 5z2 - 2z4 - 6z6 + 4z8 - 2az + 7az3 - 8az5 + 3az7 - a2 + 3a2z2 - 3a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 111. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          3 
j = 13         61 
j = 11        83  
j = 9       106   
j = 7      118    
j = 5     910     
j = 3    811      
j = 1   510       
j = -1  27        
j = -3 15         
j = -5 2          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 1]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 1]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[14, 7, 15, 8], 
 
>   X[2, 9, 3, 10], X[16, 12, 17, 11], X[20, 14, 21, 13], X[6, 15, 7, 16], 
 
>   X[22, 18, 1, 17], X[12, 20, 13, 19], X[18, 22, 19, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 1]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -10, 7, -4, 8, -6, 9, -11, 10, 
 
>   -7, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 1]]
Out[5]=   
DTCode[4, 8, 10, 14, 2, 16, 20, 6, 22, 12, 18]
In[6]:=
alex = Alexander[Knot[11, Alternating, 1]][t]
Out[6]=   
      2    12   30              2      3
-39 + -- - -- + -- + 30 t - 12 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 1]][z]
Out[7]=   
       6
1 + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 1], Knot[11, Alternating, 122], 
 
>   Knot[11, Alternating, 149]}
In[9]:=
{KnotDet[Knot[11, Alternating, 1]], KnotSignature[Knot[11, Alternating, 1]]}
Out[9]=   
{127, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 1]][q]
Out[10]=   
       -3   3    7              2       3       4       5      6      7    8
-12 + q   - -- + - + 17 q - 20 q  + 21 q  - 18 q  + 14 q  - 9 q  + 4 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 1], Knot[11, Alternating, 149]}
In[12]:=
A2Invariant[Knot[11, Alternating, 1]][q]
Out[12]=   
      -10    -6   3    2       2      4      6    8    10      12      14
-1 + q    - q   + -- - -- + 3 q  - 4 q  + 3 q  - q  + q   + 3 q   - 3 q   + 
                   4    2
                  q    q
 
       16      18      20      22    24
>   4 q   - 2 q   - 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 1]][a, z]
Out[13]=   
                             2      2                   4      4    4    6    6
      -6   2     2      2   z    3 z     2  2      4   z    2 z    z    z    z
-1 - a   + -- + a  - 3 z  - -- + ---- + a  z  - 2 z  - -- + ---- + -- + -- + --
            4                6     4                    6     4     2    4    2
           a                a     a                    a     a     a    a    a
In[14]:=
Kauffman[Knot[11, Alternating, 1]][a, z]
Out[14]=   
                                                             2      2       2
      -6   2     2   2 z   4 z   4 z   4 z              2   z    4 z    10 z
-1 + a   + -- - a  - --- - --- - --- - --- - 2 a z + 5 z  + -- - ---- - ----- - 
            4         7     5     3     a                    8     6      4
           a         a     a     a                          a     a      a
 
       2              3      3       3       3       3                      4
    3 z       2  2   z    7 z    16 z    16 z    15 z         3      4   5 z
>   ---- + 3 a  z  - -- + ---- + ----- + ----- + ----- + 7 a z  - 2 z  - ---- + 
      2               9     7      5       3       a                       8
     a               a     a      a       a                               a
 
       4       4       4              5       5       5       5       5
    9 z    28 z    15 z       2  4   z    13 z    20 z    16 z    18 z
>   ---- + ----- + ----- - 3 a  z  + -- - ----- - ----- - ----- - ----- - 
      6      4       2                9     7       5       3       a
     a      a       a                a     a       a       a
 
                       6       6       6       6              7      7      7
         5      6   4 z    14 z    36 z    25 z     2  6   8 z    4 z    4 z
>   8 a z  - 6 z  + ---- - ----- - ----- - ----- + a  z  + ---- + ---- - ---- + 
                      8      6       4       2               7      5      3
                     a      a       a       a               a      a      a
 
       7                      8       8       8      9      9      9    10    10
    3 z         7      8   9 z    16 z    11 z    5 z    8 z    3 z    z     z
>   ---- + 3 a z  + 4 z  + ---- + ----- + ----- + ---- + ---- + ---- + --- + ---
     a                       6      4       2       5      3     a      4     2
                            a      a       a       a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 1]], Vassiliev[3][Knot[11, Alternating, 1]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, Alternating, 1]][q, t]
Out[16]=   
          3     1       2       1       5      2      7    5 q       3
10 q + 8 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 11 q  t + 
               7  4    5  3    3  3    3  2      2   q t    t
              q  t    q  t    q  t    q  t    q t
 
       5         5  2       7  2      7  3       9  3      9  4      11  4
>   9 q  t + 10 q  t  + 11 q  t  + 8 q  t  + 10 q  t  + 6 q  t  + 8 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a1
K11n185
K11n185
K11a2
K11a2