© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a165
K11a165
K11a167
K11a167
K11a166
Knotscape
This page is passe. Go here instead!

   The Knot K11a166

Visit K11a166's page at Knotilus!

Acknowledgement

K11a166 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X18,6,19,5 X16,8,17,7 X2,10,3,9 X22,11,1,12 X20,13,21,14 X8,16,9,15 X6,18,7,17 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -4, 9, -3, 10, -7, 11, -6}

DT (Dowker-Thistlethwaite) Code: 4 10 18 16 2 22 20 8 6 14 12

Alexander Polynomial: - 4t-2 + 15t-1 - 21 + 15t - 4t2

Conway Polynomial: 1 - z2 - 4z4

Other knots with the same Alexander/Conway Polynomial: {1038, ...}

Determinant and Signature: {59, 2}

Jones Polynomial: q-3 - 2q-2 + 4q-1 - 6 + 8q - 9q2 + 9q3 - 8q4 + 6q5 - 3q6 + 2q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-10 + 2q-4 - q-2 + q2 - 2q4 + q6 - q8 - q14 + 3q16 + q18 + q22 - q24 - q26

HOMFLY-PT Polynomial: - a-8 + 2a-6 + 2a-6z2 - a-4z4 - a-2 - 3a-2z2 - 2a-2z4 - z2 - z4 + a2 + a2z2

Kauffman Polynomial: a-9z - 3a-9z3 + a-9z5 - a-8 + 4a-8z2 - 6a-8z4 + 2a-8z6 + a-7z - 4a-7z5 + 2a-7z7 - 2a-6 + 6a-6z2 - 4a-6z6 + 2a-6z8 + 2a-5z - 6a-5z3 + 12a-5z5 - 7a-5z7 + 2a-5z9 - 4a-4z2 + 8a-4z4 - 2a-4z8 + a-4z10 + 6a-3z - 26a-3z3 + 35a-3z5 - 18a-3z7 + 4a-3z9 + a-2 - 8a-2z2 + 6a-2z4 - 2a-2z8 + a-2z10 + 4a-1z - 12a-1z3 + 11a-1z5 - 7a-1z7 + 2a-1z9 + 2z2 - 5z6 + 2z8 + 5az3 - 7az5 + 2az7 - a2 + 4a2z2 - 4a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11166. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          1 
j = 13         21 
j = 11        41  
j = 9       42   
j = 7      54    
j = 5     44     
j = 3    45      
j = 1   35       
j = -1  13        
j = -3 13         
j = -5 1          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 166]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 166]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[18, 6, 19, 5], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[22, 11, 1, 12], X[20, 13, 21, 14], X[8, 16, 9, 15], 
 
>   X[6, 18, 7, 17], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 166]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -4, 9, -3, 10, 
 
>   -7, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 166]]
Out[5]=   
DTCode[4, 10, 18, 16, 2, 22, 20, 8, 6, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 166]][t]
Out[6]=   
      4    15             2
-21 - -- + -- + 15 t - 4 t
       2   t
      t
In[7]:=
Conway[Knot[11, Alternating, 166]][z]
Out[7]=   
     2      4
1 - z  - 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 38], Knot[11, Alternating, 166]}
In[9]:=
{KnotDet[Knot[11, Alternating, 166]], KnotSignature[Knot[11, Alternating, 166]]}
Out[9]=   
{59, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 166]][q]
Out[10]=   
      -3   2    4            2      3      4      5      6      7    8
-6 + q   - -- + - + 8 q - 9 q  + 9 q  - 8 q  + 6 q  - 3 q  + 2 q  - q
            2   q
           q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 166]}
In[12]:=
A2Invariant[Knot[11, Alternating, 166]][q]
Out[12]=   
 -10   2     -2    2      4    6    8    14      16    18    22    24    26
q    + -- - q   + q  - 2 q  + q  - q  - q   + 3 q   + q   + q   - q   - q
        4
       q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 166]][a, z]
Out[13]=   
                               2      2                 4      4
  -8   2     -2    2    2   2 z    3 z     2  2    4   z    2 z
-a   + -- - a   + a  - z  + ---- - ---- + a  z  - z  - -- - ----
        6                     6      2                  4     2
       a                     a      a                  a     a
In[14]:=
Kauffman[Knot[11, Alternating, 166]][a, z]
Out[14]=   
                                                             2      2      2
  -8   2     -2    2   z    z    2 z   6 z   4 z      2   4 z    6 z    4 z
-a   - -- + a   - a  + -- + -- + --- + --- + --- + 2 z  + ---- + ---- - ---- - 
        6               9    7    5     3     a             8      6      4
       a               a    a    a     a                   a      a      a
 
       2                3      3       3       3               4      4
    8 z       2  2   3 z    6 z    26 z    12 z         3   6 z    8 z
>   ---- + 4 a  z  - ---- - ---- - ----- - ----- + 5 a z  - ---- + ---- + 
      2                9      5      3       a                8      4
     a                a      a      a                        a      a
 
       4              5      5       5       5       5                      6
    6 z       2  4   z    4 z    12 z    35 z    11 z         5      6   2 z
>   ---- - 4 a  z  + -- - ---- + ----- + ----- + ----- - 7 a z  - 5 z  + ---- - 
      2               9     7      5       3       a                       8
     a               a     a      a       a                               a
 
       6              7      7       7      7                      8      8
    4 z     2  6   2 z    7 z    18 z    7 z         7      8   2 z    2 z
>   ---- + a  z  + ---- - ---- - ----- - ---- + 2 a z  + 2 z  + ---- - ---- - 
      6              7      5      3      a                       6      4
     a              a      a      a                              a      a
 
       8      9      9      9    10    10
    2 z    2 z    4 z    2 z    z     z
>   ---- + ---- + ---- + ---- + --- + ---
      2      5      3     a      4     2
     a      a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 166]], Vassiliev[3][Knot[11, Alternating, 166]]}
Out[15]=   
{-1, 2}
In[16]:=
Kh[Knot[11, Alternating, 166]][q, t]
Out[16]=   
         3     1       1       1       3      1      3    3 q      3
5 q + 4 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 5 q  t + 
              7  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q t
 
       5        5  2      7  2      7  3      9  3      9  4      11  4
>   4 q  t + 4 q  t  + 5 q  t  + 4 q  t  + 4 q  t  + 2 q  t  + 4 q   t  + 
 
     11  5      13  5    13  6    15  6    17  7
>   q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a166
K11a165
K11a165
K11a167
K11a167