© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a166
K11a166
K11a168
K11a168
K11a167
Knotscape
This page is passe. Go here instead!

   The Knot K11a167

Visit K11a167's page at Knotilus!

Acknowledgement

K11a167 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X18,5,19,6 X16,8,17,7 X12,10,13,9 X2,11,3,12 X8,14,9,13 X20,16,21,15 X22,17,1,18 X14,20,15,19 X6,21,7,22

Gauss Code: {1, -6, 2, -1, 3, -11, 4, -7, 5, -2, 6, -5, 7, -10, 8, -4, 9, -3, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 18 16 12 2 8 20 22 14 6

Alexander Polynomial: - 2t-3 + 11t-2 - 26t-1 + 35 - 26t + 11t2 - 2t3

Conway Polynomial: 1 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a11, ...}

Determinant and Signature: {113, 0}

Jones Polynomial: - q-5 + 3q-4 - 6q-3 + 11q-2 - 15q-1 + 18 - 18q + 16q2 - 12q3 + 8q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a11, ...}

A2 (sl(3)) Invariant: - q-16 + q-12 - 2q-10 + 3q-8 + 2q-6 - 2q-4 + 3q-2 - 3 + q2 - q6 + 4q8 - 3q10 + q12 + q14 - 2q16 + q18

HOMFLY-PT Polynomial: a-4z2 + a-4z4 + a-2 - a-2z2 - 2a-2z4 - a-2z6 - 2 - 3z2 - 2z4 - z6 + 3a2 + 4a2z2 + 2a2z4 - a4 - a4z2

Kauffman Polynomial: - 2a-6z4 + a-6z6 + 4a-5z3 - 10a-5z5 + 4a-5z7 - 4a-4z2 + 15a-4z4 - 20a-4z6 + 7a-4z8 + a-3z - 2a-3z3 + 8a-3z5 - 14a-3z7 + 6a-3z9 - a-2 - 6a-2z2 + 27a-2z4 - 27a-2z6 + 6a-2z8 + 2a-2z10 + 2a-1z - 12a-1z3 + 28a-1z5 - 26a-1z7 + 10a-1z9 - 2 + 3z2 + 6z4 - 9z6 + 3z8 + 2z10 + 2az - 6az3 + 5az5 - 4az7 + 4az9 - 3a2 + 9a2z2 - 10a2z4 + 4a2z8 + 2a3z - 2a3z3 - 4a3z5 + 4a3z7 - a4 + 4a4z2 - 6a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11167. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         51 
j = 7        73  
j = 5       95   
j = 3      97    
j = 1     99     
j = -1    710      
j = -3   48       
j = -5  27        
j = -7 14         
j = -9 2          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 167]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 167]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[18, 5, 19, 6], X[16, 8, 17, 7], 
 
>   X[12, 10, 13, 9], X[2, 11, 3, 12], X[8, 14, 9, 13], X[20, 16, 21, 15], 
 
>   X[22, 17, 1, 18], X[14, 20, 15, 19], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 167]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -11, 4, -7, 5, -2, 6, -5, 7, -10, 8, -4, 9, -3, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 167]]
Out[5]=   
DTCode[4, 10, 18, 16, 12, 2, 8, 20, 22, 14, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 167]][t]
Out[6]=   
     2    11   26              2      3
35 - -- + -- - -- - 26 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 167]][z]
Out[7]=   
     4      6
1 - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 11], Knot[11, Alternating, 167]}
In[9]:=
{KnotDet[Knot[11, Alternating, 167]], KnotSignature[Knot[11, Alternating, 167]]}
Out[9]=   
{113, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 167]][q]
Out[10]=   
      -5   3    6    11   15              2       3      4      5    6
18 - q   + -- - -- + -- - -- - 18 q + 16 q  - 12 q  + 8 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 11], Knot[11, Alternating, 167]}
In[12]:=
A2Invariant[Knot[11, Alternating, 167]][q]
Out[12]=   
      -16    -12    2    3    2    2    3     2    6      8      10    12
-3 - q    + q    - --- + -- + -- - -- + -- + q  - q  + 4 q  - 3 q   + q   + 
                    10    8    6    4    2
                   q     q    q    q    q
 
     14      16    18
>   q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 167]][a, z]
Out[13]=   
                               2    2                             4      4
      -2      2    4      2   z    z       2  2    4  2      4   z    2 z
-2 + a   + 3 a  - a  - 3 z  + -- - -- + 4 a  z  - a  z  - 2 z  + -- - ---- + 
                               4    2                             4     2
                              a    a                             a     a
 
                    6
       2  4    6   z
>   2 a  z  - z  - --
                    2
                   a
In[14]:=
Kauffman[Knot[11, Alternating, 167]][a, z]
Out[14]=   
                                                                    2      2
      -2      2    4   z    2 z              3      5        2   4 z    6 z
-2 - a   - 3 a  - a  + -- + --- + 2 a z + 2 a  z + a  z + 3 z  - ---- - ---- + 
                        3    a                                     4      2
                       a                                          a      a
 
                           3      3       3
       2  2      4  2   4 z    2 z    12 z         3      3  3      5  3
>   9 a  z  + 4 a  z  + ---- - ---- - ----- - 6 a z  - 2 a  z  - 2 a  z  + 
                          5      3      a
                         a      a
 
              4       4       4                            5      5       5
       4   2 z    15 z    27 z        2  4      4  4   10 z    8 z    28 z
>   6 z  - ---- + ----- + ----- - 10 a  z  - 6 a  z  - ----- + ---- + ----- + 
             6      4       2                            5       3      a
            a      a       a                            a       a
 
                                       6       6       6                7
         5      3  5    5  5      6   z    20 z    27 z       4  6   4 z
>   5 a z  - 4 a  z  + a  z  - 9 z  + -- - ----- - ----- + 3 a  z  + ---- - 
                                       6     4       2                 5
                                      a     a       a                 a
 
        7       7                                8      8                9
    14 z    26 z         7      3  7      8   7 z    6 z       2  8   6 z
>   ----- - ----- - 4 a z  + 4 a  z  + 3 z  + ---- + ---- + 4 a  z  + ---- + 
      3       a                                 4      2                3
     a                                         a      a                a
 
        9                       10
    10 z         9      10   2 z
>   ----- + 4 a z  + 2 z   + -----
      a                        2
                              a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 167]], Vassiliev[3][Knot[11, Alternating, 167]]}
Out[15]=   
{0, -1}
In[16]:=
Kh[Knot[11, Alternating, 167]][q, t]
Out[16]=   
10           1        2       1       4       2       7       4      8
-- + 9 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q           11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
           q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     7               3        3  2      5  2      5  3      7  3      7  4
>   --- + 9 q t + 9 q  t + 7 q  t  + 9 q  t  + 5 q  t  + 7 q  t  + 3 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   5 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a167
K11a166
K11a166
K11a168
K11a168