© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a164
K11a164
K11a166
K11a166
K11a165
Knotscape
This page is passe. Go here instead!

   The Knot K11a165

Visit K11a165's page at Knotilus!

Acknowledgement

K11a165 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X18,6,19,5 X16,8,17,7 X2,10,3,9 X20,11,21,12 X22,13,1,14 X8,16,9,15 X6,18,7,17 X14,19,15,20 X12,21,13,22

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -4, 9, -3, 10, -6, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 10 18 16 2 20 22 8 6 14 12

Alexander Polynomial: - 2t-3 + 9t-2 - 18t-1 + 23 - 18t + 9t2 - 2t3

Conway Polynomial: 1 - 3z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1087, 1098, K11a58, K11n72, ...}

Determinant and Signature: {81, 0}

Jones Polynomial: q-4 - 3q-3 + 6q-2 - 9q-1 + 12 - 13q + 12q2 - 10q3 + 8q4 - 4q5 + 2q6 - q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-12 - q-10 + q-8 + q-6 - 2q-4 + 3q-2 - 1 - q4 - 3q6 + 2q8 + 3q12 + 3q14 - q16 - q20 - q22

HOMFLY-PT Polynomial: - 2a-6 - a-6z2 + 5a-4 + 6a-4z2 + 2a-4z4 - 3a-2 - 4a-2z2 - 3a-2z4 - a-2z6 - 3z2 - 3z4 - z6 + a2 + 2a2z2 + a2z4

Kauffman Polynomial: - 2a-7z + 7a-7z3 - 5a-7z5 + a-7z7 + 2a-6 - 8a-6z2 + 13a-6z4 - 9a-6z6 + 2a-6z8 - 2a-5z + 4a-5z3 + 2a-5z5 - 6a-5z7 + 2a-5z9 + 5a-4 - 18a-4z2 + 21a-4z4 - 13a-4z6 + a-4z8 + a-4z10 - 4a-3z3 + 11a-3z5 - 14a-3z7 + 5a-3z9 + 3a-2 - 10a-2z2 + 15a-2z4 - 15a-2z6 + 4a-2z8 + a-2z10 - 2a-1z + 9a-1z3 - 8a-1z5 - a-1z7 + 3a-1z9 + 4z2 - 6z6 + 5z8 - 2az + 7az3 - 9az5 + 6az7 - a2 + 3a2z2 - 6a2z4 + 5a2z6 - 3a3z3 + 3a3z5 - a4z2 + a4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11165. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 15           1
j = 13          1 
j = 11         31 
j = 9        51  
j = 7       53   
j = 5      75    
j = 3     65     
j = 1    67      
j = -1   47       
j = -3  25        
j = -5 14         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 165]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 165]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[18, 6, 19, 5], X[16, 8, 17, 7], 
 
>   X[2, 10, 3, 9], X[20, 11, 21, 12], X[22, 13, 1, 14], X[8, 16, 9, 15], 
 
>   X[6, 18, 7, 17], X[14, 19, 15, 20], X[12, 21, 13, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 165]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -8, 5, -2, 6, -11, 7, -10, 8, -4, 9, -3, 10, 
 
>   -6, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 165]]
Out[5]=   
DTCode[4, 10, 18, 16, 2, 20, 22, 8, 6, 14, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 165]][t]
Out[6]=   
     2    9    18             2      3
23 - -- + -- - -- - 18 t + 9 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 165]][z]
Out[7]=   
       4      6
1 - 3 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58], 
 
>   Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]}
In[9]:=
{KnotDet[Knot[11, Alternating, 165]], KnotSignature[Knot[11, Alternating, 165]]}
Out[9]=   
{81, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 165]][q]
Out[10]=   
      -4   3    6    9              2       3      4      5      6    7
12 + q   - -- + -- - - - 13 q + 12 q  - 10 q  + 8 q  - 4 q  + 2 q  - q
            3    2   q
           q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 165]}
In[12]:=
A2Invariant[Knot[11, Alternating, 165]][q]
Out[12]=   
      -12    -10    -8    -6   2    3     4      6      8      12      14
-1 + q    - q    + q   + q   - -- + -- - q  - 3 q  + 2 q  + 3 q   + 3 q   - 
                                4    2
                               q    q
 
     16    20    22
>   q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 165]][a, z]
Out[13]=   
                            2      2      2                       4      4
-2   5    3     2      2   z    6 z    4 z       2  2      4   2 z    3 z
-- + -- - -- + a  - 3 z  - -- + ---- - ---- + 2 a  z  - 3 z  + ---- - ---- + 
 6    4    2                6     4      2                       4      2
a    a    a                a     a      a                       a      a
 
                  6
     2  4    6   z
>   a  z  - z  - --
                  2
                 a
In[14]:=
Kauffman[Knot[11, Alternating, 165]][a, z]
Out[14]=   
                                                        2       2       2
2    5    3     2   2 z   2 z   2 z              2   8 z    18 z    10 z
-- + -- + -- - a  - --- - --- - --- - 2 a z + 4 z  - ---- - ----- - ----- + 
 6    4    2         7     5     a                     6      4       2
a    a    a         a     a                           a      a       a
 
                         3      3      3      3                          4
       2  2    4  2   7 z    4 z    4 z    9 z         3      3  3   13 z
>   3 a  z  - a  z  + ---- + ---- - ---- + ---- + 7 a z  - 3 a  z  + ----- + 
                        7      5      3     a                          6
                       a      a      a                                a
 
        4       4                        5      5       5      5
    21 z    15 z       2  4    4  4   5 z    2 z    11 z    8 z         5
>   ----- + ----- - 6 a  z  + a  z  - ---- + ---- + ----- - ---- - 9 a z  + 
      4       2                         7      5      3      a
     a       a                         a      a      a
 
                        6       6       6              7      7       7    7
       3  5      6   9 z    13 z    15 z       2  6   z    6 z    14 z    z
>   3 a  z  - 6 z  - ---- - ----- - ----- + 5 a  z  + -- - ---- - ----- - -- + 
                       6      4       2                7     5      3     a
                      a      a       a                a     a      a
 
                       8    8      8      9      9      9    10    10
         7      8   2 z    z    4 z    2 z    5 z    3 z    z     z
>   6 a z  + 5 z  + ---- + -- + ---- + ---- + ---- + ---- + --- + ---
                      6     4     2      5      3     a      4     2
                     a     a     a      a      a            a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 165]], Vassiliev[3][Knot[11, Alternating, 165]]}
Out[15]=   
{0, 3}
In[16]:=
Kh[Knot[11, Alternating, 165]][q, t]
Out[16]=   
7           1       2       1       4       2      5      4               3
- + 6 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 7 q t + 6 q  t + 
q          9  4    7  3    5  3    5  2    3  2    3     q t
          q  t    q  t    q  t    q  t    q  t    q  t
 
       3  2      5  2      5  3      7  3      7  4      9  4    9  5
>   5 q  t  + 7 q  t  + 5 q  t  + 5 q  t  + 3 q  t  + 5 q  t  + q  t  + 
 
       11  5    11  6    13  6    15  7
>   3 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a165
K11a164
K11a164
K11a166
K11a166