© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a123
K11a123
K11a125
K11a125
K11a124
Knotscape
This page is passe. Go here instead!

   The Knot K11a124

Visit K11a124's page at Knotilus!

Acknowledgement

K11a124 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X20,8,21,7 X2,10,3,9 X16,12,17,11 X8,14,9,13 X22,16,1,15 X12,18,13,17 X6,20,7,19 X18,22,19,21

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -7, 5, -2, 6, -9, 7, -3, 8, -6, 9, -11, 10, -4, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 20 2 16 8 22 12 6 18

Alexander Polynomial: 5t-3 - 18t-2 + 34t-1 - 41 + 34t - 18t2 + 5t3

Conway Polynomial: 1 + 7z2 + 12z4 + 5z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {155, 6}

Jones Polynomial: q3 - 3q4 + 9q5 - 14q6 + 21q7 - 25q8 + 25q9 - 23q10 + 17q11 - 11q12 + 5q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 4q14 - q16 + q18 + 6q20 - 3q22 + 5q24 - 3q26 - 2q28 - 6q32 + 3q34 - 2q36 + 3q40 - q42

HOMFLY-PT Polynomial: 2a-12 - a-12z4 - 7a-10 - 9a-10z2 - a-10z4 + a-10z6 + 5a-8 + 13a-8z2 + 11a-8z4 + 3a-8z6 + a-6 + 3a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: a-17z5 - 4a-16z4 + 5a-16z6 + 5a-15z3 - 15a-15z5 + 11a-15z7 + 4a-14z4 - 17a-14z6 + 13a-14z8 - 3a-13z + 17a-13z3 - 27a-13z5 + 4a-13z7 + 8a-13z9 + 2a-12 - 3a-12z2 + 23a-12z4 - 45a-12z6 + 21a-12z8 + 2a-12z10 - 13a-11z + 34a-11z3 - 25a-11z5 - 10a-11z7 + 13a-11z9 + 7a-10 - 19a-10z2 + 34a-10z4 - 38a-10z6 + 14a-10z8 + 2a-10z10 - 10a-9z + 25a-9z3 - 20a-9z5 + 5a-9z9 + 5a-8 - 13a-8z2 + 16a-8z4 - 14a-8z6 + 6a-8z8 + 3a-7z3 - 6a-7z5 + 3a-7z7 - a-6 + 3a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, 16}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 11124. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          4 
j = 25         71 
j = 23        104  
j = 21       137   
j = 19      1210    
j = 17     1313     
j = 15    812      
j = 13   613       
j = 11  38        
j = 9  6         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 124]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 124]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[16, 12, 17, 11], X[8, 14, 9, 13], X[22, 16, 1, 15], 
 
>   X[12, 18, 13, 17], X[6, 20, 7, 19], X[18, 22, 19, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 124]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -7, 5, -2, 6, -9, 7, -3, 8, -6, 9, -11, 10, 
 
>   -4, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 124]]
Out[5]=   
DTCode[4, 10, 14, 20, 2, 16, 8, 22, 12, 6, 18]
In[6]:=
alex = Alexander[Knot[11, Alternating, 124]][t]
Out[6]=   
      5    18   34              2      3
-41 + -- - -- + -- + 34 t - 18 t  + 5 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 124]][z]
Out[7]=   
       2       4      6
1 + 7 z  + 12 z  + 5 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 124]}
In[9]:=
{KnotDet[Knot[11, Alternating, 124]], KnotSignature[Knot[11, Alternating, 124]]}
Out[9]=   
{155, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 124]][q]
Out[10]=   
 3      4      5       6       7       8       9       10       11       12
q  - 3 q  + 9 q  - 14 q  + 21 q  - 25 q  + 25 q  - 23 q   + 17 q   - 11 q   + 
 
       13    14
>   5 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 124]}
In[12]:=
A2Invariant[Knot[11, Alternating, 124]][q]
Out[12]=   
 10      12      14    16    18      20      22      24      26      28
q   - 2 q   + 4 q   - q   + q   + 6 q   - 3 q   + 5 q   - 3 q   - 2 q   - 
 
       32      34      36      40    42
>   6 q   + 3 q   - 2 q   + 3 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 124]][a, z]
Out[13]=   
                          2       2      2    4     4        4      4    6
 2     7    5     -6   9 z    13 z    3 z    z     z     11 z    3 z    z
--- - --- + -- + a   - ---- + ----- + ---- - --- - --- + ----- + ---- + --- + 
 12    10    8          10      8       6     12    10     8       6     10
a     a     a          a       a       a     a     a      a       a     a
 
       6    6
    3 z    z
>   ---- + --
      8     6
     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 124]][a, z]
Out[14]=   
                                              2       2       2      2      3
 2     7    5     -6   3 z   13 z   10 z   3 z    19 z    13 z    3 z    5 z
--- + --- + -- - a   - --- - ---- - ---- - ---- - ----- - ----- + ---- + ---- + 
 12    10    8          13    11      9     12      10      8       6     15
a     a     a          a     a       a     a       a       a       a     a
 
        3       3       3      3      4      4       4       4       4      4
    17 z    34 z    25 z    3 z    4 z    4 z    23 z    34 z    16 z    3 z
>   ----- + ----- + ----- + ---- - ---- + ---- + ----- + ----- + ----- - ---- + 
      13      11      9       7     16     14      12      10      8       6
     a       a       a       a     a      a       a       a       a       a
 
     5        5       5       5       5      5      6       6       6       6
    z     15 z    27 z    25 z    20 z    6 z    5 z    17 z    45 z    38 z
>   --- - ----- - ----- - ----- - ----- - ---- + ---- - ----- - ----- - ----- - 
     17     15      13      11      9       7     16      14      12      10
    a      a       a       a       a       a     a       a       a       a
 
        6    6       7      7       7      7       8       8       8      8
    14 z    z    11 z    4 z    10 z    3 z    13 z    21 z    14 z    6 z
>   ----- + -- + ----- + ---- - ----- + ---- + ----- + ----- + ----- + ---- + 
      8      6     15     13      11      7      14      12      10      8
     a      a     a      a       a       a      a       a       a       a
 
       9       9      9      10      10
    8 z    13 z    5 z    2 z     2 z
>   ---- + ----- + ---- + ----- + -----
     13      11      9      12      10
    a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 124]], Vassiliev[3][Knot[11, Alternating, 124]]}
Out[15]=   
{7, 16}
In[16]:=
Kh[Knot[11, Alternating, 124]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3       13  4
q  + q  + 3 q  t + 6 q  t  + 3 q   t  + 8 q   t  + 6 q   t  + 13 q   t  + 
 
       15  4       15  5       17  5       17  6       19  6       19  7
>   8 q   t  + 12 q   t  + 13 q   t  + 13 q   t  + 12 q   t  + 10 q   t  + 
 
        21  7      21  8       23  8      23  9      25  9    25  10
>   13 q   t  + 7 q   t  + 10 q   t  + 4 q   t  + 7 q   t  + q   t   + 
 
       27  10    29  11
>   4 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a124
K11a123
K11a123
K11a125
K11a125