© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a122
K11a122
K11a124
K11a124
K11a123
Knotscape
This page is passe. Go here instead!

   The Knot K11a123

Visit K11a123's page at Knotilus!

Acknowledgement

K11a123 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,6,15,5 X20,8,21,7 X2,10,3,9 X8,12,9,11 X18,14,19,13 X22,16,1,15 X6,18,7,17 X12,20,13,19 X16,22,17,21

Gauss Code: {1, -5, 2, -1, 3, -9, 4, -6, 5, -2, 6, -10, 7, -3, 8, -11, 9, -7, 10, -4, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 20 2 8 18 22 6 12 16

Alexander Polynomial: 9t-2 - 29t-1 + 41 - 29t + 9t2

Conway Polynomial: 1 + 7z2 + 9z4

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {117, 4}

Jones Polynomial: q2 - 3q3 + 7q4 - 11q5 + 17q6 - 18q7 + 18q8 - 17q9 + 12q10 - 8q11 + 4q12 - q13

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q6 - 2q8 + 2q10 + q12 - 3q14 + 5q16 + q18 + q20 + 3q22 - 2q24 + 2q26 - 4q28 - 2q30 + q32 - 4q34 + 2q36 + 2q38 - q40

HOMFLY-PT Polynomial: a-12 - a-12z2 - 4a-10 - 3a-10z2 + a-10z4 + 2a-8 + 6a-8z2 + 4a-8z4 + 2a-6 + 4a-6z2 + 3a-6z4 + a-4z2 + a-4z4

Kauffman Polynomial: - a-15z + 3a-15z3 - 3a-15z5 + a-15z7 - 3a-14z2 + 14a-14z4 - 14a-14z6 + 4a-14z8 - 4a-13z + 6a-13z3 + 6a-13z5 - 14a-13z7 + 5a-13z9 + a-12 - 6a-12z2 + 31a-12z4 - 34a-12z6 + 6a-12z8 + 2a-12z10 - 12a-11z + 20a-11z3 + a-11z5 - 25a-11z7 + 11a-11z9 + 4a-10 - 12a-10z2 + 33a-10z4 - 40a-10z6 + 11a-10z8 + 2a-10z10 - 9a-9z + 23a-9z3 - 20a-9z5 - 2a-9z7 + 6a-9z9 + 2a-8 - 2a-8z2 + 8a-8z4 - 14a-8z6 + 9a-8z8 + 4a-7z3 - 9a-7z5 + 8a-7z7 - 2a-6 + 6a-6z2 - 7a-6z4 + 6a-6z6 - 2a-5z3 + 3a-5z5 - a-4z2 + a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {7, 17}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 11123. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 27           1
j = 25          3 
j = 23         51 
j = 21        73  
j = 19       105   
j = 17      87    
j = 15     1010     
j = 13    78      
j = 11   410       
j = 9  37        
j = 7  4         
j = 513          
j = 31           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 123]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 123]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[8, 12, 9, 11], X[18, 14, 19, 13], X[22, 16, 1, 15], 
 
>   X[6, 18, 7, 17], X[12, 20, 13, 19], X[16, 22, 17, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 123]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -9, 4, -6, 5, -2, 6, -10, 7, -3, 8, -11, 9, -7, 10, 
 
>   -4, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 123]]
Out[5]=   
DTCode[4, 10, 14, 20, 2, 8, 18, 22, 6, 12, 16]
In[6]:=
alex = Alexander[Knot[11, Alternating, 123]][t]
Out[6]=   
     9    29             2
41 + -- - -- - 29 t + 9 t
      2   t
     t
In[7]:=
Conway[Knot[11, Alternating, 123]][z]
Out[7]=   
       2      4
1 + 7 z  + 9 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 123]}
In[9]:=
{KnotDet[Knot[11, Alternating, 123]], KnotSignature[Knot[11, Alternating, 123]]}
Out[9]=   
{117, 4}
In[10]:=
J=Jones[Knot[11, Alternating, 123]][q]
Out[10]=   
 2      3      4       5       6       7       8       9       10      11
q  - 3 q  + 7 q  - 11 q  + 17 q  - 18 q  + 18 q  - 17 q  + 12 q   - 8 q   + 
 
       12    13
>   4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 123]}
In[12]:=
A2Invariant[Knot[11, Alternating, 123]][q]
Out[12]=   
 6      8      10    12      14      16    18    20      22      24      26
q  - 2 q  + 2 q   + q   - 3 q   + 5 q   + q   + q   + 3 q   - 2 q   + 2 q   - 
 
       28      30    32      34      36      38    40
>   4 q   - 2 q   + q   - 4 q   + 2 q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 123]][a, z]
Out[13]=   
                        2       2      2      2    2    4       4      4    4
 -12    4    2    2    z     3 z    6 z    4 z    z    z     4 z    3 z    z
a    - --- + -- + -- - --- - ---- + ---- + ---- + -- + --- + ---- + ---- + --
        10    8    6    12    10      8      6     4    10     8      6     4
       a     a    a    a     a       a      a     a    a      a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 123]][a, z]
Out[14]=   
                                                   2      2       2      2
 -12    4    2    2     z    4 z   12 z   9 z   3 z    6 z    12 z    2 z
a    + --- + -- - -- - --- - --- - ---- - --- - ---- - ---- - ----- - ---- + 
        10    8    6    15    13    11     9     14     12      10      8
       a     a    a    a     a     a      a     a      a       a       a
 
       2    2      3      3       3       3      3      3       4       4
    6 z    z    3 z    6 z    20 z    23 z    4 z    2 z    14 z    31 z
>   ---- - -- + ---- + ---- + ----- + ----- + ---- - ---- + ----- + ----- + 
      6     4    15     13      11      9       7      5      14      12
     a     a    a      a       a       a       a      a      a       a
 
        4      4      4    4      5      5    5        5      5      5
    33 z    8 z    7 z    z    3 z    6 z    z     20 z    9 z    3 z
>   ----- + ---- - ---- + -- - ---- + ---- + --- - ----- - ---- + ---- - 
      10      8      6     4    15     13     11     9       7      5
     a       a      a     a    a      a      a      a       a      a
 
        6       6       6       6      6    7        7       7      7      7
    14 z    34 z    40 z    14 z    6 z    z     14 z    25 z    2 z    8 z
>   ----- - ----- - ----- - ----- + ---- + --- - ----- - ----- - ---- + ---- + 
      14      12      10      8       6     15     13      11      9      7
     a       a       a       a       a     a      a       a       a      a
 
       8      8       8      8      9       9      9      10      10
    4 z    6 z    11 z    9 z    5 z    11 z    6 z    2 z     2 z
>   ---- + ---- + ----- + ---- + ---- + ----- + ---- + ----- + -----
     14     12      10      8     13      11      9      12      10
    a      a       a       a     a       a       a      a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 123]], Vassiliev[3][Knot[11, Alternating, 123]]}
Out[15]=   
{7, 17}
In[16]:=
Kh[Knot[11, Alternating, 123]][q, t]
Out[16]=   
 3    5      5        7  2      9  2      9  3      11  3       11  4
q  + q  + 3 q  t + 4 q  t  + 3 q  t  + 7 q  t  + 4 q   t  + 10 q   t  + 
 
       13  4      13  5       15  5       15  6      17  6      17  7
>   7 q   t  + 8 q   t  + 10 q   t  + 10 q   t  + 8 q   t  + 7 q   t  + 
 
        19  7      19  8      21  8      21  9      23  9    23  10
>   10 q   t  + 5 q   t  + 7 q   t  + 3 q   t  + 5 q   t  + q   t   + 
 
       25  10    27  11
>   3 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a123
K11a122
K11a122
K11a124
K11a124