© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a121
K11a121
K11a123
K11a123
K11a122
Knotscape
This page is passe. Go here instead!

   The Knot K11a122

Visit K11a122's page at Knotilus!

Acknowledgement

K11a122 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X14,6,15,5 X18,7,19,8 X16,9,17,10 X2,11,3,12 X20,13,21,14 X22,16,1,15 X8,17,9,18 X12,19,13,20 X6,21,7,22

Gauss Code: {1, -6, 2, -1, 3, -11, 4, -9, 5, -2, 6, -10, 7, -3, 8, -5, 9, -4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 18 16 2 20 22 8 12 6

Alexander Polynomial: 2t-3 - 12t-2 + 30t-1 - 39 + 30t - 12t2 + 2t3

Conway Polynomial: 1 + 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a1, K11a149, ...}

Determinant and Signature: {127, -2}

Jones Polynomial: q-9 - 3q-8 + 7q-7 - 13q-6 + 17q-5 - 20q-4 + 21q-3 - 18q-2 + 14q-1 - 8 + 4q - q2

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-28 - q-24 + 3q-22 - 3q-20 - 2q-18 + 2q-16 - 4q-14 + 3q-12 - q-10 + q-8 + 3q-6 - 3q-4 + 5q-2 - 1 - q2 + 2q4 - q6

HOMFLY-PT Polynomial: - z2 - z4 + 2a2 + 3a2z2 + 2a2z4 + a2z6 + a4z4 + a4z6 - 2a6 - 3a6z2 - 2a6z4 + a8 + a8z2

Kauffman Polynomial: - a-1z3 + a-1z5 + 2z2 - 6z4 + 4z6 + 3az3 - 10az5 + 7az7 - 2a2 + 3a2z2 + a2z4 - 10a2z6 + 8a2z8 + 2a3z + a3z3 - 3a3z5 - 4a3z7 + 6a3z9 - 6a4z2 + 23a4z4 - 27a4z6 + 10a4z8 + 2a4z10 + 2a5z - 9a5z3 + 20a5z5 - 23a5z7 + 11a5z9 + 2a6 - 13a6z2 + 28a6z4 - 26a6z6 + 7a6z8 + 2a6z10 - 2a7z + 4a7z5 - 9a7z7 + 5a7z9 + a8 - 4a8z2 + 9a8z4 - 12a8z6 + 5a8z8 - 2a9z + 6a9z3 - 8a9z5 + 3a9z7 + 2a10z2 - 3a10z4 + a10z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=-2 is the signature of 11122. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5           1
j = 3          3 
j = 1         51 
j = -1        93  
j = -3       106   
j = -5      118    
j = -7     910     
j = -9    811      
j = -11   59       
j = -13  28        
j = -15 15         
j = -17 2          
j = -191           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 122]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 122]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[18, 7, 19, 8], 
 
>   X[16, 9, 17, 10], X[2, 11, 3, 12], X[20, 13, 21, 14], X[22, 16, 1, 15], 
 
>   X[8, 17, 9, 18], X[12, 19, 13, 20], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 122]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -11, 4, -9, 5, -2, 6, -10, 7, -3, 8, -5, 9, -4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 122]]
Out[5]=   
DTCode[4, 10, 14, 18, 16, 2, 20, 22, 8, 12, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 122]][t]
Out[6]=   
      2    12   30              2      3
-39 + -- - -- + -- + 30 t - 12 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 122]][z]
Out[7]=   
       6
1 + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 1], Knot[11, Alternating, 122], 
 
>   Knot[11, Alternating, 149]}
In[9]:=
{KnotDet[Knot[11, Alternating, 122]], KnotSignature[Knot[11, Alternating, 122]]}
Out[9]=   
{127, -2}
In[10]:=
J=Jones[Knot[11, Alternating, 122]][q]
Out[10]=   
      -9   3    7    13   17   20   21   18   14          2
-8 + q   - -- + -- - -- + -- - -- + -- - -- + -- + 4 q - q
            8    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 122]}
In[12]:=
A2Invariant[Knot[11, Alternating, 122]][q]
Out[12]=   
      -28    -24    3     3     2     2     4     3     -10    -8   3    3
-1 + q    - q    + --- - --- - --- + --- - --- + --- - q    + q   + -- - -- + 
                    22    20    18    16    14    12                 6    4
                   q     q     q     q     q     q                  q    q
 
    5     2      4    6
>   -- - q  + 2 q  - q
     2
    q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 122]][a, z]
Out[13]=   
   2      6    8    2      2  2      6  2    8  2    4      2  4    4  4
2 a  - 2 a  + a  - z  + 3 a  z  - 3 a  z  + a  z  - z  + 2 a  z  + a  z  - 
 
       6  4    2  6    4  6
>   2 a  z  + a  z  + a  z
In[14]:=
Kauffman[Knot[11, Alternating, 122]][a, z]
Out[14]=   
    2      6    8      3        5        7        9        2      2  2
-2 a  + 2 a  + a  + 2 a  z + 2 a  z - 2 a  z - 2 a  z + 2 z  + 3 a  z  - 
 
                                               3
       4  2       6  2      8  2      10  2   z         3    3  3      5  3
>   6 a  z  - 13 a  z  - 4 a  z  + 2 a   z  - -- + 3 a z  + a  z  - 9 a  z  + 
                                              a
 
                                                                         5
       9  3      4    2  4       4  4       6  4      8  4      10  4   z
>   6 a  z  - 6 z  + a  z  + 23 a  z  + 28 a  z  + 9 a  z  - 3 a   z  + -- - 
                                                                        a
 
          5      3  5       5  5      7  5      9  5      6       2  6
>   10 a z  - 3 a  z  + 20 a  z  + 4 a  z  - 8 a  z  + 4 z  - 10 a  z  - 
 
        4  6       6  6       8  6    10  6        7      3  7       5  7
>   27 a  z  - 26 a  z  - 12 a  z  + a   z  + 7 a z  - 4 a  z  - 23 a  z  - 
 
       7  7      9  7      2  8       4  8      6  8      8  8      3  9
>   9 a  z  + 3 a  z  + 8 a  z  + 10 a  z  + 7 a  z  + 5 a  z  + 6 a  z  + 
 
        5  9      7  9      4  10      6  10
>   11 a  z  + 5 a  z  + 2 a  z   + 2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 122]], Vassiliev[3][Knot[11, Alternating, 122]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, Alternating, 122]][q, t]
Out[16]=   
6    9     1        2        1        5        2        8        5
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        8      11       9      10      11      8      10    3 t
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + 
     11  4    9  4    9  3    7  3    7  2    5  2    5      3      q
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
               2      3  2    5  3
>   5 q t + q t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a122
K11a121
K11a121
K11a123
K11a123