© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a124
K11a124
K11a126
K11a126
K11a125
Knotscape
This page is passe. Go here instead!

   The Knot K11a125

Visit K11a125's page at Knotilus!

Acknowledgement

K11a125 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,4,11,3 X14,5,15,6 X20,8,21,7 X2,10,3,9 X16,11,17,12 X18,14,19,13 X8,15,9,16 X22,17,1,18 X6,20,7,19 X12,22,13,21

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -3, 8, -6, 9, -7, 10, -4, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 10 14 20 2 16 18 8 22 6 12

Alexander Polynomial: - t-4 + 6t-3 - 19t-2 + 38t-1 - 47 + 38t - 19t2 + 6t3 - t4

Conway Polynomial: 1 - 3z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {175, 2}

Jones Polynomial: q-3 - 4q-2 + 10q-1 - 17 + 24q - 28q2 + 29q3 - 25q4 + 19q5 - 12q6 + 5q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11a297, ...}

A2 (sl(3)) Invariant: q-8 - 2q-6 + 4q-4 - 2q-2 - 1 + 5q2 - 6q4 + 5q6 - 3q8 + q10 + 3q12 - 4q14 + 5q16 - 3q18 - q20 + 2q22 - q24

HOMFLY-PT Polynomial: - a-6 - a-6z2 - a-6z4 + 3a-4 + 7a-4z2 + 6a-4z4 + 2a-4z6 - 3a-2 - 10a-2z2 - 11a-2z4 - 5a-2z6 - a-2z8 + 2 + 4z2 + 3z4 + z6

Kauffman Polynomial: a-9z5 - 3a-8z4 + 5a-8z6 - a-7z + 5a-7z3 - 15a-7z5 + 12a-7z7 + a-6 - 4a-6z2 + 12a-6z4 - 24a-6z6 + 16a-6z8 - 2a-5z + 14a-5z3 - 22a-5z5 - 2a-5z7 + 11a-5z9 + 3a-4 - 16a-4z2 + 49a-4z4 - 66a-4z6 + 26a-4z8 + 3a-4z10 - 2a-3z + 12a-3z3 - 3a-3z5 - 27a-3z7 + 19a-3z9 + 3a-2 - 20a-2z2 + 50a-2z4 - 55a-2z6 + 18a-2z8 + 3a-2z10 - 2a-1z + 8a-1z3 - 5a-1z5 - 9a-1z7 + 8a-1z9 + 2 - 7z2 + 14z4 - 17z6 + 8z8 - az + 5az3 - 8az5 + 4az7 + a2z2 - 2a2z4 + a2z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11125. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          4 
j = 13         81 
j = 11        114  
j = 9       148   
j = 7      1511    
j = 5     1314     
j = 3    1115      
j = 1   714       
j = -1  310        
j = -3 17         
j = -5 3          
j = -71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 125]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 125]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 5, 15, 6], X[20, 8, 21, 7], 
 
>   X[2, 10, 3, 9], X[16, 11, 17, 12], X[18, 14, 19, 13], X[8, 15, 9, 16], 
 
>   X[22, 17, 1, 18], X[6, 20, 7, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 125]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -3, 8, -6, 9, -7, 10, 
 
>   -4, 11, -9]
In[5]:=
DTCode[Knot[11, Alternating, 125]]
Out[5]=   
DTCode[4, 10, 14, 20, 2, 16, 18, 8, 22, 6, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 125]][t]
Out[6]=   
       -4   6    19   38              2      3    4
-47 - t   + -- - -- + -- + 38 t - 19 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 125]][z]
Out[7]=   
       4      6    8
1 - 3 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 125]}
In[9]:=
{KnotDet[Knot[11, Alternating, 125]], KnotSignature[Knot[11, Alternating, 125]]}
Out[9]=   
{175, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 125]][q]
Out[10]=   
       -3   4    10              2       3       4       5       6      7    8
-17 + q   - -- + -- + 24 q - 28 q  + 29 q  - 25 q  + 19 q  - 12 q  + 5 q  - q
             2   q
            q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 125], Knot[11, Alternating, 297]}
In[12]:=
A2Invariant[Knot[11, Alternating, 125]][q]
Out[12]=   
      -8   2    4    2       2      4      6      8    10      12      14
-1 + q   - -- + -- - -- + 5 q  - 6 q  + 5 q  - 3 q  + q   + 3 q   - 4 q   + 
            6    4    2
           q    q    q
 
       16      18    20      22    24
>   5 q   - 3 q   - q   + 2 q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 125]][a, z]
Out[13]=   
                            2      2       2           4      4       4
     -6   3    3       2   z    7 z    10 z       4   z    6 z    11 z     6
2 - a   + -- - -- + 4 z  - -- + ---- - ----- + 3 z  - -- + ---- - ----- + z  + 
           4    2           6     4      2             6     4      2
          a    a           a     a      a             a     a      a
 
       6      6    8
    2 z    5 z    z
>   ---- - ---- - --
      4      2     2
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 125]][a, z]
Out[14]=   
                                                           2       2       2
     -6   3    3    z    2 z   2 z   2 z            2   4 z    16 z    20 z
2 + a   + -- + -- - -- - --- - --- - --- - a z - 7 z  - ---- - ----- - ----- + 
           4    2    7    5     3     a                   6      4       2
          a    a    a    a     a                         a      a       a
 
               3       3       3      3                       4       4
     2  2   5 z    14 z    12 z    8 z         3       4   3 z    12 z
>   a  z  + ---- + ----- + ----- + ---- + 5 a z  + 14 z  - ---- + ----- + 
              7      5       3      a                        8      6
             a      a       a                               a      a
 
        4       4              5       5       5      5      5
    49 z    50 z       2  4   z    15 z    22 z    3 z    5 z         5
>   ----- + ----- - 2 a  z  + -- - ----- - ----- - ---- - ---- - 8 a z  - 
      4       2                9     7       5       3     a
     a       a                a     a       a       a
 
               6       6       6       6               7      7       7
        6   5 z    24 z    66 z    55 z     2  6   12 z    2 z    27 z
>   17 z  + ---- - ----- - ----- - ----- + a  z  + ----- - ---- - ----- - 
              8      6       4       2               7       5      3
             a      a       a       a               a       a      a
 
       7                       8       8       8       9       9      9
    9 z         7      8   16 z    26 z    18 z    11 z    19 z    8 z
>   ---- + 4 a z  + 8 z  + ----- + ----- + ----- + ----- + ----- + ---- + 
     a                       6       4       2       5       3      a
                            a       a       a       a       a
 
       10      10
    3 z     3 z
>   ----- + -----
      4       2
     a       a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 125]], Vassiliev[3][Knot[11, Alternating, 125]]}
Out[15]=   
{0, 1}
In[16]:=
Kh[Knot[11, Alternating, 125]][q, t]
Out[16]=   
           3     1       3       1       7      3     10    7 q       3
14 q + 11 q  + ----- + ----- + ----- + ----- + ---- + --- + --- + 15 q  t + 
                7  4    5  3    3  3    3  2      2   q t    t
               q  t    q  t    q  t    q  t    q t
 
        5         5  2       7  2       7  3       9  3      9  4       11  4
>   13 q  t + 14 q  t  + 15 q  t  + 11 q  t  + 14 q  t  + 8 q  t  + 11 q   t  + 
 
       11  5      13  5    13  6      15  6    17  7
>   4 q   t  + 8 q   t  + q   t  + 4 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a125
K11a124
K11a124
K11a126
K11a126