© | Dror Bar-Natan: The Knot Atlas: Torus Knots:
T(5,4)
T(5,4)
T(8,3)
T(8,3)
T(15,2)
TubePlot
This page is passe. Go here instead!

   The 15-Crossing Torus Knot T(15,2)

Visit T(15,2)'s page at Knotilus!

Acknowledgement

PD Presentation: X9,25,10,24 X25,11,26,10 X11,27,12,26 X27,13,28,12 X13,29,14,28 X29,15,30,14 X15,1,16,30 X1,17,2,16 X17,3,18,2 X3,19,4,18 X19,5,20,4 X5,21,6,20 X21,7,22,6 X7,23,8,22 X23,9,24,8

Gauss Code: {-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7}

Braid Representative:    

Alexander Polynomial: t-7 - t-6 + t-5 - t-4 + t-3 - t-2 + t-1 - 1 + t - t2 + t3 - t4 + t5 - t6 + t7

Conway Polynomial: 1 + 28z2 + 126z4 + 210z6 + 165z8 + 66z10 + 13z12 + z14

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {15, 14}

Jones Polynomial: q7 + q9 - q10 + q11 - q12 + q13 - q14 + q15 - q16 + q17 - q18 + q19 - q20 + q21 - q22

Other knots (up to mirrors) with the same Jones Polynomial: {...}

Coloured Jones Polynomial (in the 3-dimensional representation of sl(2); n=2): q14 + q17 - q19 + q20 - q22 + q23 - q25 + q26 - q28 + q29 - q31 + q32 - q34 + q35 - q37 + q38 - q40 + q41 - q43 + q44 - q45 - q46 + q47 - q49 + q50 - q52 + q53 - q55 + q56 - q58 + q59

A2 (sl(3)) Invariant: q26 + q28 + 2q30 + q32 + q34 - q58 - q60 - q62

Kauffman Polynomial: a-29z + a-28z2 - a-27z + a-27z3 - 2a-26z2 + a-26z4 + a-25z - 3a-25z3 + a-25z5 + 3a-24z2 - 4a-24z4 + a-24z6 - a-23z + 6a-23z3 - 5a-23z5 + a-23z7 - 4a-22z2 + 10a-22z4 - 6a-22z6 + a-22z8 + a-21z - 10a-21z3 + 15a-21z5 - 7a-21z7 + a-21z9 + 5a-20z2 - 20a-20z4 + 21a-20z6 - 8a-20z8 + a-20z10 - a-19z + 15a-19z3 - 35a-19z5 + 28a-19z7 - 9a-19z9 + a-19z11 - 6a-18z2 + 35a-18z4 - 56a-18z6 + 36a-18z8 - 10a-18z10 + a-18z12 + a-17z - 21a-17z3 + 70a-17z5 - 84a-17z7 + 45a-17z9 - 11a-17z11 + a-17z13 - 7a-16 + 63a-16z2 - 182a-16z4 + 246a-16z6 - 175a-16z8 + 67a-16z10 - 13a-16z12 + a-16z14 + 7a-15z - 56a-15z3 + 126a-15z5 - 120a-15z7 + 55a-15z9 - 12a-15z11 + a-15z13 - 8a-14 + 84a-14z2 - 252a-14z4 + 330a-14z6 - 220a-14z8 + 78a-14z10 - 14a-14z12 + a-14z14

V2 and V3, the type 2 and 3 Vassiliev invariants: {28, 140}

Khovanov Homology. The coefficients of the monomials trqj are shown, along with their alternating sums χ (fixed j, alternation over r). The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789101112131415χ
45               1-1
43                0
41             11 0
39                0
37           11   0
35                0
33         11     0
31                0
29       11       0
27                0
25     11         0
23                0
21   11           0
19                0
17  1             1
151               1
131               1


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
TubePlot[TorusKnot[15, 2]]
Out[2]=   
 -Graphics- 
In[3]:=
Crossings[TorusKnot[15, 2]]
Out[3]=   
15
In[4]:=
PD[TorusKnot[15, 2]]
Out[4]=   
PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26], X[27, 13, 28, 12], 
 
>   X[13, 29, 14, 28], X[29, 15, 30, 14], X[15, 1, 16, 30], X[1, 17, 2, 16], 
 
>   X[17, 3, 18, 2], X[3, 19, 4, 18], X[19, 5, 20, 4], X[5, 21, 6, 20], 
 
>   X[21, 7, 22, 6], X[7, 23, 8, 22], X[23, 9, 24, 8]]
In[5]:=
GaussCode[TorusKnot[15, 2]]
Out[5]=   
GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, 
 
>   -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7]
In[6]:=
BR[TorusKnot[15, 2]]
Out[6]=   
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[7]:=
alex = Alexander[TorusKnot[15, 2]][t]
Out[7]=   
      -7    -6    -5    -4    -3    -2   1        2    3    4    5    6    7
-1 + t   - t   + t   - t   + t   - t   + - + t - t  + t  - t  + t  - t  + t
                                         t
In[8]:=
Conway[TorusKnot[15, 2]][z]
Out[8]=   
        2        4        6        8       10       12    14
1 + 28 z  + 126 z  + 210 z  + 165 z  + 66 z   + 13 z   + z
In[9]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[9]=   
{}
In[10]:=
{KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]}
Out[10]=   
{15, 14}
In[11]:=
J=Jones[TorusKnot[15, 2]][q]
Out[11]=   
 7    9    10    11    12    13    14    15    16    17    18    19    20
q  + q  - q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 
 
     21    22
>   q   - q
In[12]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[12]=   
{}
In[13]:=
ColouredJones[TorusKnot[15, 2], 2][q]
Out[13]=   
 14    17    19    20    22    23    25    26    28    29    31    32    34
q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 
 
     35    37    38    40    41    43    44    45    46    47    49    50
>   q   - q   + q   - q   + q   - q   + q   - q   - q   + q   - q   + q   - 
 
     52    53    55    56    58    59
>   q   + q   - q   + q   - q   + q
In[14]:=
A2Invariant[TorusKnot[15, 2]][q]
Out[14]=   
 26    28      30    32    34    58    60    62
q   + q   + 2 q   + q   + q   - q   - q   - q
In[15]:=
Kauffman[TorusKnot[15, 2]][a, z]
Out[15]=   
                                                             2       2      2
-7     8     z     z     z     z     z     z     z    7 z   z     2 z    3 z
--- - --- + --- - --- + --- - --- + --- - --- + --- + --- + --- - ---- + ---- - 
 16    14    29    27    25    23    21    19    17    15    28    26     24
a     a     a     a     a     a     a     a     a     a     a     a      a
 
       2      2      2       2       2    3       3      3       3       3
    4 z    5 z    6 z    63 z    84 z    z     3 z    6 z    10 z    15 z
>   ---- + ---- - ---- + ----- + ----- + --- - ---- + ---- - ----- + ----- - 
     22     20     18      16      14     27    25     23      21      19
    a      a      a       a       a      a     a      a       a       a
 
        3       3    4       4       4       4       4        4        4
    21 z    56 z    z     4 z    10 z    20 z    35 z    182 z    252 z
>   ----- - ----- + --- - ---- + ----- - ----- + ----- - ------ - ------ + 
      17      15     26    24      22      20      18      16       14
     a       a      a     a       a       a       a       a        a
 
     5       5       5       5       5        5    6       6       6       6
    z     5 z    15 z    35 z    70 z    126 z    z     6 z    21 z    56 z
>   --- - ---- + ----- - ----- + ----- + ------ + --- - ---- + ----- - ----- + 
     25    23      21      19      17      15      24    22      20      18
    a     a       a       a       a       a       a     a       a       a
 
         6        6    7       7       7       7        7    8       8
    246 z    330 z    z     7 z    28 z    84 z    120 z    z     8 z
>   ------ + ------ + --- - ---- + ----- - ----- - ------ + --- - ---- + 
      16       14      23    21      19      17      15      22    20
     a        a       a     a       a       a       a       a     a
 
        8        8        8    9       9       9       9    10       10
    36 z    175 z    220 z    z     9 z    45 z    55 z    z     10 z
>   ----- - ------ - ------ + --- - ---- + ----- + ----- + --- - ------ + 
      18      16       14      21    19      17      15     20     18
     a       a        a       a     a       a       a      a      a
 
        10       10    11       11       11    12       12       12    13
    67 z     78 z     z     11 z     12 z     z     13 z     14 z     z
>   ------ + ------ + --- - ------ - ------ + --- - ------ - ------ + --- + 
      16       14      19     17       15      18     16       14      17
     a        a       a      a        a       a      a        a       a
 
     13    14    14
    z     z     z
>   --- + --- + ---
     15    16    14
    a     a     a
In[16]:=
{Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]}
Out[16]=   
{28, 140}
In[17]:=
Kh[TorusKnot[15, 2]][q, t]
Out[17]=   
 13    15    17  2    21  3    21  4    25  5    25  6    29  7    29  8
q   + q   + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + q   t  + 
 
     33  9    33  10    37  11    37  12    41  13    41  14    45  15
>   q   t  + q   t   + q   t   + q   t   + q   t   + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: Torus Knots: The Torus Knot T(15,2)
T(5,4)
T(5,4)
T(8,3)
T(8,3)