© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n72
K11n72
K11n74
K11n74
K11n73
Knotscape
This page is passe. Go here instead!

   The Knot K11n73

Visit K11n73's page at Knotilus!

Acknowledgement

K11n73 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,14,6,15 X2837 X20,10,21,9 X11,16,12,17 X13,6,14,7 X15,18,16,19 X17,12,18,13 X22,20,1,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, 5, -11, -6, 9, -7, 3, -8, 6, -9, 8, 10, -5, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 20 -16 -6 -18 -12 22 10

Alexander Polynomial: t-2 - 2t-1 + 3 - 2t + t2

Conway Polynomial: 1 + 2z2 + z4

Other knots with the same Alexander/Conway Polynomial: {820, 10140, K11n74, ...}

Determinant and Signature: {9, 0}

Jones Polynomial: - q-4 + q-3 - q-2 + q-1 + 2 - q + 2q2 - 3q3 + 2q4 - 2q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11n74, ...}

A2 (sl(3)) Invariant: - q-12 - q-10 - 2q-8 + q-4 + 4q-2 + 5 + 2q2 + q4 - 3q6 - 2q8 - 2q10 - q12 + q14 + q18

HOMFLY-PT Polynomial: 2a-4 + 3a-4z2 + a-4z4 - 8a-2 - 12a-2z2 - 6a-2z4 - a-2z6 + 11 + 15z2 + 7z4 + z6 - 4a2 - 4a2z2 - a2z4

Kauffman Polynomial: 3a-6z2 - 4a-6z4 + a-6z6 - 4a-5z + 10a-5z3 - 9a-5z5 + 2a-5z7 + 2a-4 + a-4z2 - a-4z4 - 3a-4z6 + a-4z8 - 13a-3z + 24a-3z3 - 16a-3z5 + 3a-3z7 + 8a-2 - 13a-2z2 + 11a-2z4 - 6a-2z6 + a-2z8 - 17a-1z + 29a-1z3 - 15a-1z5 + 2a-1z7 + 11 - 19z2 + 18z4 - 8z6 + z8 - 13az + 25az3 - 14az5 + 2az7 + 4a2 - 8a2z2 + 10a2z4 - 6a2z6 + a2z8 - 5a3z + 10a3z3 - 6a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1173. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          1 
j = 9         11 
j = 7        21  
j = 5      111   
j = 3      12    
j = 1    131     
j = -1   1 2      
j = -3   11       
j = -5 11         
j = -7            
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 73]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 73]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[11, 16, 12, 17], X[13, 6, 14, 7], X[15, 18, 16, 19], 
 
>   X[17, 12, 18, 13], X[22, 20, 1, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 73]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, 5, -11, -6, 9, -7, 3, -8, 6, -9, 8, 10, 
 
>   -5, 11, -10]
In[5]:=
DTCode[Knot[11, NonAlternating, 73]]
Out[5]=   
DTCode[4, 8, -14, 2, 20, -16, -6, -18, -12, 22, 10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 73]][t]
Out[6]=   
     -2   2          2
3 + t   - - - 2 t + t
          t
In[7]:=
Conway[Knot[11, NonAlternating, 73]][z]
Out[7]=   
       2    4
1 + 2 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 20], Knot[10, 140], Knot[11, NonAlternating, 73], 
 
>   Knot[11, NonAlternating, 74]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 73]], KnotSignature[Knot[11, NonAlternating, 73]]}
Out[9]=   
{9, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 73]][q]
Out[10]=   
     -4    -3    -2   1          2      3      4      5    6
2 - q   + q   - q   + - - q + 2 q  - 3 q  + 2 q  - 2 q  + q
                      q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 73], Knot[11, NonAlternating, 74]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 73]][q]
Out[12]=   
     -12    -10   2     -4   4       2    4      6      8      10    12    14
5 - q    - q    - -- + q   + -- + 2 q  + q  - 3 q  - 2 q  - 2 q   - q   + q   + 
                   8          2
                  q          q
 
     18
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 73]][a, z]
Out[13]=   
                                 2       2                     4      4
     2    8       2       2   3 z    12 z       2  2      4   z    6 z
11 + -- - -- - 4 a  + 15 z  + ---- - ----- - 4 a  z  + 7 z  + -- - ---- - 
      4    2                    4      2                       4     2
     a    a                    a      a                       a     a
 
                  6
     2  4    6   z
>   a  z  + z  - --
                  2
                 a
In[14]:=
Kauffman[Knot[11, NonAlternating, 73]][a, z]
Out[14]=   
                                                                       2    2
     2    8       2   4 z   13 z   17 z               3         2   3 z    z
11 + -- + -- + 4 a  - --- - ---- - ---- - 13 a z - 5 a  z - 19 z  + ---- + -- - 
      4    2           5      3     a                                 6     4
     a    a           a      a                                       a     a
 
        2                 3       3       3
    13 z       2  2   10 z    24 z    29 z          3       3  3       4
>   ----- - 8 a  z  + ----- + ----- + ----- + 25 a z  + 10 a  z  + 18 z  - 
      2                 5       3       a
     a                 a       a
 
       4    4       4                 5       5       5
    4 z    z    11 z        2  4   9 z    16 z    15 z          5      3  5
>   ---- - -- + ----- + 10 a  z  - ---- - ----- - ----- - 14 a z  - 6 a  z  - 
      6     4     2                  5      3       a
     a     a     a                  a      a
 
            6      6      6                7      7      7
       6   z    3 z    6 z       2  6   2 z    3 z    2 z         7    3  7
>   8 z  + -- - ---- - ---- - 6 a  z  + ---- + ---- + ---- + 2 a z  + a  z  + 
            6     4      2                5      3     a
           a     a      a                a      a
 
          8    8
     8   z    z     2  8
>   z  + -- + -- + a  z
          4    2
         a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 73]], Vassiliev[3][Knot[11, NonAlternating, 73]]}
Out[15]=   
{2, -2}
In[16]:=
Kh[Knot[11, NonAlternating, 73]][q, t]
Out[16]=   
2           1       1       1       1      1      1     q          3      5
- + 3 q + ----- + ----- + ----- + ----- + ---- + ---- + - + q t + q  t + q  t + 
q          9  5    5  4    5  3    3  2      2    3     t
          q  t    q  t    q  t    q  t    q t    q  t
 
       3  2    5  2    5  3      7  3    7  4    9  4    9  5    11  5    13  6
>   2 q  t  + q  t  + q  t  + 2 q  t  + q  t  + q  t  + q  t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n73
K11n72
K11n72
K11n74
K11n74