© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n71
K11n71
K11n73
K11n73
K11n72
Knotscape
This page is passe. Go here instead!

   The Knot K11n72

Visit K11n72's page at Knotilus!

Acknowledgement

K11n72 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,14,6,15 X2837 X20,10,21,9 X16,12,17,11 X13,6,14,7 X18,16,19,15 X12,18,13,17 X22,20,1,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, -9, -7, 3, 8, -6, 9, -8, 10, -5, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 -14 2 20 16 -6 18 12 22 10

Alexander Polynomial: - 2t-3 + 9t-2 - 18t-1 + 23 - 18t + 9t2 - 2t3

Conway Polynomial: 1 - 3z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1087, 1098, K11a58, K11a165, ...}

Determinant and Signature: {81, 4}

Jones Polynomial: 3q2 - 5q3 + 10q4 - 13q5 + 13q6 - 14q7 + 11q8 - 7q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: 3q6 + 5q10 + 2q12 - 2q14 - 7q18 - q20 - 2q22 + q24 + 4q26 - q28 + 2q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 6a-8 + 8a-8z2 + 3a-8z4 - 11a-6 - 16a-6z2 - 9a-6z4 - 2a-6z6 + 7a-4 + 9a-4z2 + 3a-4z4

Kauffman Polynomial: - a-13z3 + a-13z5 + 3a-12z2 - 7a-12z4 + 4a-12z6 - 3a-11z + 5a-11z3 - 10a-11z5 + 6a-11z7 + a-10 + 11a-10z2 - 19a-10z4 + 3a-10z6 + 4a-10z8 - 15a-9z + 37a-9z3 - 38a-9z5 + 14a-9z7 + a-9z9 + 6a-8 - 3a-8z2 + 2a-8z4 - 10a-8z6 + 8a-8z8 - 21a-7z + 42a-7z3 - 33a-7z5 + 11a-7z7 + a-7z9 + 11a-6 - 24a-6z2 + 20a-6z4 - 9a-6z6 + 4a-6z8 - 9a-5z + 11a-5z3 - 6a-5z5 + 3a-5z7 + 7a-4 - 13a-4z2 + 6a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1172. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23         1
j = 21        3 
j = 19       41 
j = 17      73  
j = 15     74   
j = 13    67    
j = 11   77     
j = 9  36      
j = 7 27       
j = 513        
j = 33         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 72]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 72]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[16, 12, 17, 11], X[13, 6, 14, 7], X[18, 16, 19, 15], 
 
>   X[12, 18, 13, 17], X[22, 20, 1, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 72]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, -9, -7, 3, 8, -6, 9, -8, 10, 
 
>   -5, 11, -10]
In[5]:=
DTCode[Knot[11, NonAlternating, 72]]
Out[5]=   
DTCode[4, 8, -14, 2, 20, 16, -6, 18, 12, 22, 10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 72]][t]
Out[6]=   
     2    9    18             2      3
23 - -- + -- - -- - 18 t + 9 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, NonAlternating, 72]][z]
Out[7]=   
       4      6
1 - 3 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58], 
 
>   Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 72]], KnotSignature[Knot[11, NonAlternating, 72]]}
Out[9]=   
{81, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 72]][q]
Out[10]=   
   2      3       4       5       6       7       8      9      10    11
3 q  - 5 q  + 10 q  - 13 q  + 13 q  - 14 q  + 11 q  - 7 q  + 4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 72]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 72]][q]
Out[12]=   
   6      10      12      14      18    20      22    24      26    28
3 q  + 5 q   + 2 q   - 2 q   - 7 q   - q   - 2 q   + q   + 4 q   - q   + 
 
       30    34
>   2 q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 72]][a, z]
Out[13]=   
                        2       2       2      2      4      4      4      6
  -10   6    11   7    z     8 z    16 z    9 z    3 z    9 z    3 z    2 z
-a    + -- - -- + -- - --- + ---- - ----- + ---- + ---- - ---- + ---- - ----
         8    6    4    10     8      6       4      8      6      4      6
        a    a    a    a      a      a       a      a      a      a      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 72]][a, z]
Out[14]=   
                                                   2       2      2       2
 -10   6    11   7    3 z   15 z   21 z   9 z   3 z    11 z    3 z    24 z
a    + -- + -- + -- - --- - ---- - ---- - --- + ---- + ----- - ---- - ----- - 
        8    6    4    11     9      7     5     12      10      8      6
       a    a    a    a      a      a     a     a       a       a      a
 
        2    3       3       3       3       3      4       4      4       4
    13 z    z     5 z    37 z    42 z    11 z    7 z    19 z    2 z    20 z
>   ----- - --- + ---- + ----- + ----- + ----- - ---- - ----- + ---- + ----- + 
      4      13    11      9       7       5      12      10      8      6
     a      a     a       a       a       a      a       a       a      a
 
       4    5        5       5       5      5      6      6       6      6
    6 z    z     10 z    38 z    33 z    6 z    4 z    3 z    10 z    9 z
>   ---- + --- - ----- - ----- - ----- - ---- + ---- + ---- - ----- - ---- + 
      4     13     11      9       7       5     12     10      8       6
     a     a      a       a       a       a     a      a       a       a
 
       7       7       7      7      8      8      8    9    9
    6 z    14 z    11 z    3 z    4 z    8 z    4 z    z    z
>   ---- + ----- + ----- + ---- + ---- + ---- + ---- + -- + --
     11      9       7       5     10      8      6     9    7
    a       a       a       a     a       a      a     a    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 72]], Vassiliev[3][Knot[11, NonAlternating, 72]]}
Out[15]=   
{0, -3}
In[16]:=
Kh[Knot[11, NonAlternating, 72]][q, t]
Out[16]=   
   3    5      5        7        7  2      9  2      9  3      11  3
3 q  + q  + 3 q  t + 2 q  t + 7 q  t  + 3 q  t  + 6 q  t  + 7 q   t  + 
 
       11  4      13  4      13  5      15  5      15  6      17  6
>   7 q   t  + 6 q   t  + 7 q   t  + 7 q   t  + 4 q   t  + 7 q   t  + 
 
       17  7      19  7    19  8      21  8    23  9
>   3 q   t  + 4 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n72
K11n71
K11n71
K11n73
K11n73