© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n45
K11n45
K11n47
K11n47
K11n46
Knotscape
This page is passe. Go here instead!

   The Knot K11n46

Visit K11n46's page at Knotilus!

Acknowledgement

K11n46 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,13,6,12 X2837 X20,9,21,10 X18,12,19,11 X13,7,14,6 X10,16,11,15 X22,17,1,18 X14,20,15,19 X16,21,17,22

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, 5, -8, 6, 3, -7, -10, 8, -11, 9, -6, 10, -5, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 -12 2 20 18 -6 10 22 14 16

Alexander Polynomial: 2t-3 - 8t-2 + 18t-1 - 23 + 18t - 8t2 + 2t3

Conway Polynomial: 1 + 4z2 + 4z4 + 2z6

Other knots with the same Alexander/Conway Polynomial: {1057, K11n40, ...}

Determinant and Signature: {79, 2}

Jones Polynomial: - 2 + 6q - 9q2 + 13q3 - 13q4 + 13q5 - 11q6 + 7q7 - 4q8 + q9

Other knots (up to mirrors) with the same Jones Polynomial: {K11n40, ...}

A2 (sl(3)) Invariant: - 2 + 2q2 - 2q4 + q6 + 4q8 + 5q12 - q14 + q16 - q18 - 4q20 + q22 - 2q24 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - 6a-6 - 8a-6z2 - 3a-6z4 + 8a-4 + 15a-4z2 + 9a-4z4 + 2a-4z6 - 2a-2 - 4a-2z2 - 2a-2z4

Kauffman Polynomial: a-10z2 - 2a-10z4 + a-10z6 - a-9z + 8a-9z3 - 11a-9z5 + 4a-9z7 + a-8 + 3a-8z4 - 11a-8z6 + 5a-8z8 - 9a-7z + 28a-7z3 - 32a-7z5 + 7a-7z7 + 2a-7z9 + 6a-6 - 15a-6z2 + 22a-6z4 - 27a-6z6 + 11a-6z8 - 13a-5z + 32a-5z3 - 30a-5z5 + 8a-5z7 + 2a-5z9 + 8a-4 - 20a-4z2 + 23a-4z4 - 14a-4z6 + 6a-4z8 - 7a-3z + 15a-3z3 - 9a-3z5 + 5a-3z7 + 2a-2 - 6a-2z2 + 6a-2z4 + a-2z6 - 2a-1z + 3a-1z3

V2 and V3, the type 2 and 3 Vassiliev invariants: {4, 6}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1146. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 19         1
j = 17        3 
j = 15       41 
j = 13      73  
j = 11     64   
j = 9    77    
j = 7   66     
j = 5  37      
j = 3 36       
j = 1 4        
j = -12         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 46]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 46]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 13, 6, 12], X[2, 8, 3, 7], 
 
>   X[20, 9, 21, 10], X[18, 12, 19, 11], X[13, 7, 14, 6], X[10, 16, 11, 15], 
 
>   X[22, 17, 1, 18], X[14, 20, 15, 19], X[16, 21, 17, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 46]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, 5, -8, 6, 3, -7, -10, 8, -11, 9, -6, 10, 
 
>   -5, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 46]]
Out[5]=   
DTCode[4, 8, -12, 2, 20, 18, -6, 10, 22, 14, 16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 46]][t]
Out[6]=   
      2    8    18             2      3
-23 + -- - -- + -- + 18 t - 8 t  + 2 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, NonAlternating, 46]][z]
Out[7]=   
       2      4      6
1 + 4 z  + 4 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 57], Knot[11, NonAlternating, 40], Knot[11, NonAlternating, 46]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 46]], KnotSignature[Knot[11, NonAlternating, 46]]}
Out[9]=   
{79, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 46]][q]
Out[10]=   
              2       3       4       5       6      7      8    9
-2 + 6 q - 9 q  + 13 q  - 13 q  + 13 q  - 11 q  + 7 q  - 4 q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 40], Knot[11, NonAlternating, 46]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 46]][q]
Out[12]=   
        2      4    6      8      12    14    16    18      20    22      24
-2 + 2 q  - 2 q  + q  + 4 q  + 5 q   - q   + q   - q   - 4 q   + q   - 2 q   + 
 
     28
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 46]][a, z]
Out[13]=   
                      2      2       2      2      4      4      4      6
 -8   6    8    2    z    8 z    15 z    4 z    3 z    9 z    2 z    2 z
a   - -- + -- - -- + -- - ---- + ----- - ---- - ---- + ---- - ---- + ----
       6    4    2    8     6      4       2      6      4      2      4
      a    a    a    a     a      a       a      a      a      a      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 46]][a, z]
Out[14]=   
                                                    2        2       2      2
 -8   6    8    2    z    9 z   13 z   7 z   2 z   z     15 z    20 z    6 z
a   + -- + -- + -- - -- - --- - ---- - --- - --- + --- - ----- - ----- - ---- + 
       6    4    2    9    7      5     3     a     10     6       4       2
      a    a    a    a    a      a     a           a      a       a       a
 
       3       3       3       3      3      4      4       4       4      4
    8 z    28 z    32 z    15 z    3 z    2 z    3 z    22 z    23 z    6 z
>   ---- + ----- + ----- + ----- + ---- - ---- + ---- + ----- + ----- + ---- - 
      9      7       5       3      a      10      8      6       4       2
     a      a       a       a             a       a      a       a       a
 
        5       5       5      5    6        6       6       6    6      7
    11 z    32 z    30 z    9 z    z     11 z    27 z    14 z    z    4 z
>   ----- - ----- - ----- - ---- + --- - ----- - ----- - ----- + -- + ---- + 
      9       7       5       3     10     8       6       4      2     9
     a       a       a       a     a      a       a       a      a     a
 
       7      7      7      8       8      8      9      9
    7 z    8 z    5 z    5 z    11 z    6 z    2 z    2 z
>   ---- + ---- + ---- + ---- + ----- + ---- + ---- + ----
      7      5      3      8      6       4      7      5
     a      a      a      a      a       a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 46]], Vassiliev[3][Knot[11, NonAlternating, 46]]}
Out[15]=   
{4, 6}
In[16]:=
Kh[Knot[11, NonAlternating, 46]][q, t]
Out[16]=   
         3    2       3        5        5  2      7  2      7  3      9  3
4 q + 3 q  + --- + 6 q  t + 3 q  t + 7 q  t  + 6 q  t  + 6 q  t  + 7 q  t  + 
             q t
 
       9  4      11  4      11  5      13  5      13  6      15  6    15  7
>   7 q  t  + 6 q   t  + 4 q   t  + 7 q   t  + 3 q   t  + 4 q   t  + q   t  + 
 
       17  7    19  8
>   3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n46
K11n45
K11n45
K11n47
K11n47