© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n44
K11n44
K11n46
K11n46
K11n45
Knotscape
This page is passe. Go here instead!

   The Knot K11n45

Visit K11n45's page at Knotilus!

Acknowledgement

K11n45 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X9,21,10,20 X11,18,12,19 X6,13,7,14 X15,10,16,11 X17,1,18,22 X19,14,20,15 X21,17,22,16

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 6, -10, 5, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 -20 -18 6 -10 -22 -14 -16

Alexander Polynomial: 2t-2 - 6t-1 + 9 - 6t + 2t2

Conway Polynomial: 1 + 2z2 + 2z4

Other knots with the same Alexander/Conway Polynomial: {88, 10129, K11n39, K11n50, K11n132, ...}

Determinant and Signature: {25, 0}

Jones Polynomial: - q-4 + q-3 - q-1 + 4 - 4q + 5q2 - 5q3 + 4q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11n39, ...}

A2 (sl(3)) Invariant: - q-12 - q-10 - q-8 + q-6 + 3q-2 + 3 + q2 + 2q4 - 2q6 - 2q10 - q12 + q14 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 5a-2 - 9a-2z2 - 5a-2z4 - a-2z6 + 8 + 13z2 + 7z4 + z6 - 3a2 - 4a2z2 - a2z4

Kauffman Polynomial: a-6z2 - 3a-6z4 + a-6z6 - 2a-5z + 8a-5z3 - 11a-5z5 + 3a-5z7 + a-4 - 3a-4z2 + 8a-4z4 - 11a-4z6 + 3a-4z8 - 8a-3z + 20a-3z3 - 14a-3z5 + a-3z9 + 5a-2 - 18a-2z2 + 30a-2z4 - 20a-2z6 + 4a-2z8 - 12a-1z + 23a-1z3 - 7a-1z5 - 3a-1z7 + a-1z9 + 8 - 24z2 + 32z4 - 15z6 + 2z8 - 10az + 20az3 - 10az5 + az7 + 3a2 - 10a2z2 + 13a2z4 - 7a2z6 + a2z8 - 4a3z + 9a3z3 - 6a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1145. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          2 
j = 9         21 
j = 7        32  
j = 5      132   
j = 3      23    
j = 1    143     
j = -1   113      
j = -3   12       
j = -5 111        
j = -7            
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 45]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 45]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[9, 21, 10, 20], X[11, 18, 12, 19], X[6, 13, 7, 14], X[15, 10, 16, 11], 
 
>   X[17, 1, 18, 22], X[19, 14, 20, 15], X[21, 17, 22, 16]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 45]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 6, -10, 
 
>   5, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 45]]
Out[5]=   
DTCode[4, 8, 12, 2, -20, -18, 6, -10, -22, -14, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 45]][t]
Out[6]=   
    2    6            2
9 + -- - - - 6 t + 2 t
     2   t
    t
In[7]:=
Conway[Knot[11, NonAlternating, 45]][z]
Out[7]=   
       2      4
1 + 2 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 8], Knot[10, 129], Knot[11, NonAlternating, 39], 
 
>   Knot[11, NonAlternating, 45], Knot[11, NonAlternating, 50], 
 
>   Knot[11, NonAlternating, 132]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 45]], KnotSignature[Knot[11, NonAlternating, 45]]}
Out[9]=   
{25, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 45]][q]
Out[10]=   
     -4    -3   1            2      3      4      5    6
4 - q   + q   - - - 4 q + 5 q  - 5 q  + 4 q  - 3 q  + q
                q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 39], Knot[11, NonAlternating, 45]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 45]][q]
Out[12]=   
     -12    -10    -8    -6   3     2      4      6      10    12    14    16
3 - q    - q    - q   + q   + -- + q  + 2 q  - 2 q  - 2 q   - q   + q   - q   + 
                               2
                              q
 
     18
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 45]][a, z]
Out[13]=   
                                 2      2                     4      4
     -4   5       2       2   2 z    9 z       2  2      4   z    5 z
8 + a   - -- - 3 a  + 13 z  + ---- - ---- - 4 a  z  + 7 z  + -- - ---- - 
           2                    4      2                      4     2
          a                    a      a                      a     a
 
                  6
     2  4    6   z
>   a  z  + z  - --
                  2
                 a
In[14]:=
Kauffman[Knot[11, NonAlternating, 45]][a, z]
Out[14]=   
                                                                    2      2
     -4   5       2   2 z   8 z   12 z               3         2   z    3 z
8 + a   + -- + 3 a  - --- - --- - ---- - 10 a z - 4 a  z - 24 z  + -- - ---- - 
           2           5     3     a                                6     4
          a           a     a                                      a     a
 
        2                 3       3       3
    18 z        2  2   8 z    20 z    23 z          3      3  3       4
>   ----- - 10 a  z  + ---- + ----- + ----- + 20 a z  + 9 a  z  + 32 z  - 
      2                  5      3       a
     a                  a      a
 
       4      4       4                  5       5      5
    3 z    8 z    30 z        2  4   11 z    14 z    7 z          5      3  5
>   ---- + ---- + ----- + 13 a  z  - ----- - ----- - ---- - 10 a z  - 6 a  z  - 
      6      4      2                  5       3      a
     a      a      a                  a       a
 
             6       6       6                7      7
        6   z    11 z    20 z       2  6   3 z    3 z       7    3  7      8
>   15 z  + -- - ----- - ----- - 7 a  z  + ---- - ---- + a z  + a  z  + 2 z  + 
             6     4       2                 5     a
            a     a       a                 a
 
       8      8            9    9
    3 z    4 z     2  8   z    z
>   ---- + ---- + a  z  + -- + --
      4      2             3   a
     a      a             a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 45]], Vassiliev[3][Knot[11, NonAlternating, 45]]}
Out[15]=   
{2, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 45]][q, t]
Out[16]=   
3           1       1       1       1       1      1      2      1    q
- + 4 q + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + - + 
q          9  5    5  4    5  3    5  2    3  2      2    3     q t   t
          q  t    q  t    q  t    q  t    q  t    q t    q  t
 
               3      5        3  2      5  2      5  3      7  3      7  4
>   3 q t + 2 q  t + q  t + 3 q  t  + 3 q  t  + 2 q  t  + 3 q  t  + 2 q  t  + 
 
       9  4    9  5      11  5    13  6
>   2 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n45
K11n44
K11n44
K11n46
K11n46