© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n41
K11n41
K11n43
K11n43
K11n42
Knotscape
This page is passe. Go here instead!

   The Knot K11n42

Visit K11n42's page at Knotilus!

Acknowledgement

K11n42 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X12,5,13,6 X2837 X9,18,10,19 X11,21,12,20 X6,13,7,14 X15,10,16,11 X17,22,18,1 X19,15,20,14 X21,16,22,17

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 5, -10, 6, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 12 2 -18 -20 6 -10 -22 -14 -16

Alexander Polynomial: 1

Conway Polynomial: 1

Other knots with the same Alexander/Conway Polynomial: {01, K11n34, ...}

Determinant and Signature: {1, 0}

Jones Polynomial: q-6 - 2q-5 + 2q-4 - 2q-3 + q-2 + 2q - 2q2 + 2q3 - q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11n34, ...}

A2 (sl(3)) Invariant: q-18 + q-14 - q-12 - q-10 - q-8 - 2q-6 + q-4 + 3 + 2q2 + q4 + q6 - q8 - q12

HOMFLY-PT Polynomial: - 2a-2 - 3a-2z2 - a-2z4 + 7 + 11z2 + 6z4 + z6 - 6a2 - 11a2z2 - 6a2z4 - a2z6 + 2a4 + 3a4z2 + a4z4

Kauffman Polynomial: - 2a-3z + 6a-3z3 - 5a-3z5 + a-3z7 + 2a-2 - 9a-2z2 + 16a-2z4 - 11a-2z6 + 2a-2z8 - 5a-1z + 11a-1z3 - 2a-1z5 - 4a-1z7 + a-1z9 + 7 - 24z2 + 36z4 - 20z6 + 3z8 - 7az + 12az3 - 5az7 + az9 + 6a2 - 20a2z2 + 26a2z4 - 14a2z6 + 2a2z8 - 7a3z + 16a3z3 - 12a3z5 + 2a3z7 + 2a4 - 2a4z2 + 2a4z4 - 4a4z6 + a4z8 - 3a5z + 9a5z3 - 9a5z5 + 2a5z7 + 3a6z2 - 4a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {0, 2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1142. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 9           1
j = 7          1 
j = 5         11 
j = 3       121  
j = 1      211   
j = -1     132    
j = -3    221     
j = -5   111      
j = -7  121       
j = -9 11         
j = -11 1          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 42]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 42]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[9, 18, 10, 19], X[11, 21, 12, 20], X[6, 13, 7, 14], X[15, 10, 16, 11], 
 
>   X[17, 22, 18, 1], X[19, 15, 20, 14], X[21, 16, 22, 17]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 42]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 5, -10, 
 
>   6, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 42]]
Out[5]=   
DTCode[4, 8, 12, 2, -18, -20, 6, -10, -22, -14, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 42]][t]
Out[6]=   
1
In[7]:=
Conway[Knot[11, NonAlternating, 42]][z]
Out[7]=   
1
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[0, 1], Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 42]], KnotSignature[Knot[11, NonAlternating, 42]]}
Out[9]=   
{1, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 42]][q]
Out[10]=   
 -6   2    2    2     -2            2      3    4
q   - -- + -- - -- + q   + 2 q - 2 q  + 2 q  - q
       5    4    3
      q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 34], Knot[11, NonAlternating, 42]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 42]][q]
Out[12]=   
     -18    -14    -12    -10    -8   2     -4      2    4    6    8    12
3 + q    + q    - q    - q    - q   - -- + q   + 2 q  + q  + q  - q  - q
                                       6
                                      q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 42]][a, z]
Out[13]=   
                                  2                                4
    2       2      4       2   3 z        2  2      4  2      4   z
7 - -- - 6 a  + 2 a  + 11 z  - ---- - 11 a  z  + 3 a  z  + 6 z  - -- - 
     2                           2                                 2
    a                           a                                 a
 
       2  4    4  4    6    2  6
>   6 a  z  + a  z  + z  - a  z
In[14]:=
Kauffman[Knot[11, NonAlternating, 42]][a, z]
Out[14]=   
                                                                        2
    2       2      4   2 z   5 z              3        5         2   9 z
7 + -- + 6 a  + 2 a  - --- - --- - 7 a z - 7 a  z - 3 a  z - 24 z  - ---- - 
     2                  3     a                                        2
    a                  a                                              a
 
                                      3       3
        2  2      4  2      6  2   6 z    11 z          3       3  3
>   20 a  z  - 2 a  z  + 3 a  z  + ---- + ----- + 12 a z  + 16 a  z  + 
                                     3      a
                                    a
 
                          4                                     5      5
       5  3       4   16 z        2  4      4  4      6  4   5 z    2 z
>   9 a  z  + 36 z  + ----- + 26 a  z  + 2 a  z  - 4 a  z  - ---- - ---- - 
                        2                                      3     a
                       a                                      a
 
                                     6                                 7
        3  5      5  5       6   11 z        2  6      4  6    6  6   z
>   12 a  z  - 9 a  z  - 20 z  - ----- - 14 a  z  - 4 a  z  + a  z  + -- - 
                                   2                                   3
                                  a                                   a
 
       7                                          8                      9
    4 z         7      3  7      5  7      8   2 z       2  8    4  8   z
>   ---- - 5 a z  + 2 a  z  + 2 a  z  + 3 z  + ---- + 2 a  z  + a  z  + -- + 
     a                                           2                      a
                                                a
 
       9
>   a z
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 42]], Vassiliev[3][Knot[11, NonAlternating, 42]]}
Out[15]=   
{0, 2}
In[16]:=
Kh[Knot[11, NonAlternating, 42]][q, t]
Out[16]=   
 -3   3           1        1        1       1       1       2       1
q   + - + 2 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- + 
      q          13  6    11  5    9  5    9  4    7  4    7  3    5  3
                q   t    q   t    q  t    q  t    q  t    q  t    q  t
 
      1       1       2      1      2      1    2 t          3        2
>   ----- + ----- + ----- + ---- + ---- + --- + --- + q t + q  t + q t  + 
     7  2    5  2    3  2    5      3     q t    q
    q  t    q  t    q  t    q  t   q  t
 
       3  2    3  3    5  3    5  4    7  4    9  5
>   2 q  t  + q  t  + q  t  + q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n42
K11n41
K11n41
K11n43
K11n43