© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n40
K11n40
K11n42
K11n42
K11n41
Knotscape
This page is passe. Go here instead!

   The Knot K11n41

Visit K11n41's page at Knotilus!

Acknowledgement

K11n41 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,13,6,12 X2837 X9,18,10,19 X11,17,12,16 X13,7,14,6 X15,21,16,20 X17,22,18,1 X19,15,20,14 X21,10,22,11

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, -5, 11, -6, 3, -7, 10, -8, 6, -9, 5, -10, 8, -11, 9}

DT (Dowker-Thistlethwaite) Code: 4 8 -12 2 -18 -16 -6 -20 -22 -14 -10

Alexander Polynomial: t-4 - 4t-3 + 8t-2 - 9t-1 + 9 - 9t + 8t2 - 4t3 + t4

Conway Polynomial: 1 + 3z2 + 4z4 + 4z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11n47, ...}

Determinant and Signature: {53, 4}

Jones Polynomial: - q-1 + 3 - 5q + 8q2 - 8q3 + 9q4 - 8q5 + 6q6 - 4q7 + q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11n47, ...}

A2 (sl(3)) Invariant: - q-2 + 1 - q2 + q4 + q6 + q8 + 4q10 - q12 + 3q14 - 2q16 - q18 - q20 - 2q22 + q24 - q26 + q28

HOMFLY-PT Polynomial: a-8 + a-8z2 - 5a-6 - 8a-6z2 - 5a-6z4 - a-6z6 + 6a-4 + 14a-4z2 + 13a-4z4 + 6a-4z6 + a-4z8 - a-2 - 4a-2z2 - 4a-2z4 - a-2z6

Kauffman Polynomial: a-10z2 - 2a-9z + 4a-9z3 + a-8 - a-8z4 + 2a-8z6 - 10a-7z + 24a-7z3 - 20a-7z5 + 6a-7z7 + 5a-6 - 15a-6z2 + 24a-6z4 - 21a-6z6 + 6a-6z8 - 13a-5z + 35a-5z3 - 28a-5z5 + 2a-5z7 + 2a-5z9 + 6a-4 - 22a-4z2 + 42a-4z4 - 36a-4z6 + 9a-4z8 - 7a-3z + 20a-3z3 - 12a-3z5 - 3a-3z7 + 2a-3z9 + a-2 - 8a-2z2 + 17a-2z4 - 13a-2z6 + 3a-2z8 - 2a-1z + 5a-1z3 - 4a-1z5 + a-1z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, 4}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1141. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 17         1
j = 15        3 
j = 13       31 
j = 11      53  
j = 9     43   
j = 7    45    
j = 5   44     
j = 3  25      
j = 1 13       
j = -1 2        
j = -31         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 41]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 41]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 13, 6, 12], X[2, 8, 3, 7], 
 
>   X[9, 18, 10, 19], X[11, 17, 12, 16], X[13, 7, 14, 6], X[15, 21, 16, 20], 
 
>   X[17, 22, 18, 1], X[19, 15, 20, 14], X[21, 10, 22, 11]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 41]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, -5, 11, -6, 3, -7, 10, -8, 6, -9, 5, -10, 
 
>   8, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 41]]
Out[5]=   
DTCode[4, 8, -12, 2, -18, -16, -6, -20, -22, -14, -10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 41]][t]
Out[6]=   
     -4   4    8    9            2      3    4
9 + t   - -- + -- - - - 9 t + 8 t  - 4 t  + t
           3    2   t
          t    t
In[7]:=
Conway[Knot[11, NonAlternating, 41]][z]
Out[7]=   
       2      4      6    8
1 + 3 z  + 4 z  + 4 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 41], Knot[11, NonAlternating, 47]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 41]], KnotSignature[Knot[11, NonAlternating, 41]]}
Out[9]=   
{53, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 41]][q]
Out[10]=   
    1            2      3      4      5      6      7    8
3 - - - 5 q + 8 q  - 8 q  + 9 q  - 8 q  + 6 q  - 4 q  + q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 41], Knot[11, NonAlternating, 47]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 41]][q]
Out[12]=   
     -2    2    4    6    8      10    12      14      16    18    20      22
1 - q   - q  + q  + q  + q  + 4 q   - q   + 3 q   - 2 q   - q   - q   - 2 q   + 
 
     24    26    28
>   q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 41]][a, z]
Out[13]=   
                       2      2       2      2      4       4      4    6
 -8   5    6     -2   z    8 z    14 z    4 z    5 z    13 z    4 z    z
a   - -- + -- - a   + -- - ---- + ----- - ---- - ---- + ----- - ---- - -- + 
       6    4          8     6      4       2      6      4       2     6
      a    a          a     a      a       a      a      a       a     a
 
       6    6    8
    6 z    z    z
>   ---- - -- + --
      4     2    4
     a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 41]][a, z]
Out[14]=   
                                                       2        2       2
 -8   5    6     -2   2 z   10 z   13 z   7 z   2 z   z     15 z    22 z
a   + -- + -- + a   - --- - ---- - ---- - --- - --- + --- - ----- - ----- - 
       6    4          9      7      5     3     a     10     6       4
      a    a          a      a      a     a           a      a       a
 
       2      3       3       3       3      3    4       4       4       4
    8 z    4 z    24 z    35 z    20 z    5 z    z    24 z    42 z    17 z
>   ---- + ---- + ----- + ----- + ----- + ---- - -- + ----- + ----- + ----- - 
      2      9      7       5       3      a      8     6       4       2
     a      a      a       a       a             a     a       a       a
 
        5       5       5      5      6       6       6       6      7      7
    20 z    28 z    12 z    4 z    2 z    21 z    36 z    13 z    6 z    2 z
>   ----- - ----- - ----- - ---- + ---- - ----- - ----- - ----- + ---- + ---- - 
      7       5       3      a       8      6       4       2       7      5
     a       a       a              a      a       a       a       a      a
 
       7    7      8      8      8      9      9
    3 z    z    6 z    9 z    3 z    2 z    2 z
>   ---- + -- + ---- + ---- + ---- + ---- + ----
      3    a      6      4      2      5      3
     a           a      a      a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 41]], Vassiliev[3][Knot[11, NonAlternating, 41]]}
Out[15]=   
{3, 4}
In[16]:=
Kh[Knot[11, NonAlternating, 41]][q, t]
Out[16]=   
                                           3
   3      5     1      2     q    3 q   2 q       5        7        7  2
5 q  + 4 q  + ----- + ---- + -- + --- + ---- + 4 q  t + 4 q  t + 5 q  t  + 
               3  3      2    2    t     t
              q  t    q t    t
 
       9  2      9  3      11  3      11  4      13  4    13  5      15  5
>   4 q  t  + 3 q  t  + 5 q   t  + 3 q   t  + 3 q   t  + q   t  + 3 q   t  + 
 
     17  6
>   q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n41
K11n40
K11n40
K11n42
K11n42