© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n34
K11n34
K11n36
K11n36
K11n35
Knotscape
This page is passe. Go here instead!

   The Knot K11n35

Visit K11n35's page at Knotilus!

Acknowledgement

K11n35 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X5,13,6,12 X2837 X16,9,17,10 X18,12,19,11 X13,7,14,6 X20,16,21,15 X22,17,1,18 X14,20,15,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, 3, -7, -10, 8, -5, 9, -6, 10, -8, 11, -9}

DT (Dowker-Thistlethwaite) Code: 4 8 -12 2 16 18 -6 20 22 14 10

Alexander Polynomial: - 2t-3 + 10t-2 - 20t-1 + 25 - 20t + 10t2 - 2t3

Conway Polynomial: 1 + 2z2 - 2z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {1092, K11a153, K11a224, K11n43, ...}

Determinant and Signature: {89, 4}

Jones Polynomial: 3q2 - 6q3 + 11q4 - 14q5 + 15q6 - 15q7 + 12q8 - 8q9 + 4q10 - q11

Other knots (up to mirrors) with the same Jones Polynomial: {K11n43, ...}

A2 (sl(3)) Invariant: 3q6 - q8 + 4q10 + q12 - 2q14 + 2q16 - 5q18 + q20 - 2q22 + 3q26 - 2q28 + 2q30 - q34

HOMFLY-PT Polynomial: - a-10 - a-10z2 + 4a-8 + 7a-8z2 + 3a-8z4 - 7a-6 - 12a-6z2 - 8a-6z4 - 2a-6z6 + 5a-4 + 8a-4z2 + 3a-4z4

Kauffman Polynomial: - a-13z3 + a-13z5 + 2a-12z2 - 6a-12z4 + 4a-12z6 - 2a-11z + 6a-11z3 - 12a-11z5 + 7a-11z7 + a-10 + 2a-10z2 - 5a-10z4 - 5a-10z6 + 6a-10z8 - 6a-9z + 23a-9z3 - 30a-9z5 + 11a-9z7 + 2a-9z9 + 4a-8 - 10a-8z2 + 16a-8z4 - 20a-8z6 + 11a-8z8 - 8a-7z + 20a-7z3 - 20a-7z5 + 7a-7z7 + 2a-7z9 + 7a-6 - 21a-6z2 + 21a-6z4 - 11a-6z6 + 5a-6z8 - 4a-5z + 4a-5z3 - 3a-5z5 + 3a-5z7 + 5a-4 - 11a-4z2 + 6a-4z4

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=4 is the signature of 1135. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 23         1
j = 21        3 
j = 19       51 
j = 17      73  
j = 15     85   
j = 13    77    
j = 11   78     
j = 9  47      
j = 7 27       
j = 514        
j = 33         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 35]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 35]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 13, 6, 12], X[2, 8, 3, 7], 
 
>   X[16, 9, 17, 10], X[18, 12, 19, 11], X[13, 7, 14, 6], X[20, 16, 21, 15], 
 
>   X[22, 17, 1, 18], X[14, 20, 15, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 35]]
Out[4]=   
GaussCode[1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, 3, -7, -10, 8, -5, 9, -6, 10, 
 
>   -8, 11, -9]
In[5]:=
DTCode[Knot[11, NonAlternating, 35]]
Out[5]=   
DTCode[4, 8, -12, 2, 16, 18, -6, 20, 22, 14, 10]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 35]][t]
Out[6]=   
     2    10   20              2      3
25 - -- + -- - -- - 20 t + 10 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, NonAlternating, 35]][z]
Out[7]=   
       2      4      6
1 + 2 z  - 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[10, 92], Knot[11, Alternating, 153], Knot[11, Alternating, 224], 
 
>   Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 35]], KnotSignature[Knot[11, NonAlternating, 35]]}
Out[9]=   
{89, 4}
In[10]:=
J=Jones[Knot[11, NonAlternating, 35]][q]
Out[10]=   
   2      3       4       5       6       7       8      9      10    11
3 q  - 6 q  + 11 q  - 14 q  + 15 q  - 15 q  + 12 q  - 8 q  + 4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 35]][q]
Out[12]=   
   6    8      10    12      14      16      18    20      22      26      28
3 q  - q  + 4 q   + q   - 2 q   + 2 q   - 5 q   + q   - 2 q   + 3 q   - 2 q   + 
 
       30    34
>   2 q   - q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 35]][a, z]
Out[13]=   
                        2       2       2      2      4      4      4      6
  -10   4    7    5    z     7 z    12 z    8 z    3 z    8 z    3 z    2 z
-a    + -- - -- + -- - --- + ---- - ----- + ---- + ---- - ---- + ---- - ----
         8    6    4    10     8      6       4      8      6      4      6
        a    a    a    a      a      a       a      a      a      a      a
In[14]:=
Kauffman[Knot[11, NonAlternating, 35]][a, z]
Out[14]=   
                                                 2      2       2       2
 -10   4    7    5    2 z   6 z   8 z   4 z   2 z    2 z    10 z    21 z
a    + -- + -- + -- - --- - --- - --- - --- + ---- + ---- - ----- - ----- - 
        8    6    4    11    9     7     5     12     10      8       6
       a    a    a    a     a     a     a     a      a       a       a
 
        2    3       3       3       3      3      4      4       4       4
    11 z    z     6 z    23 z    20 z    4 z    6 z    5 z    16 z    21 z
>   ----- - --- + ---- + ----- + ----- + ---- - ---- - ---- + ----- + ----- + 
      4      13    11      9       7       5     12     10      8       6
     a      a     a       a       a       a     a      a       a       a
 
       4    5        5       5       5      5      6      6       6       6
    6 z    z     12 z    30 z    20 z    3 z    4 z    5 z    20 z    11 z
>   ---- + --- - ----- - ----- - ----- - ---- + ---- - ---- - ----- - ----- + 
      4     13     11      9       7       5     12     10      8       6
     a     a      a       a       a       a     a      a       a       a
 
       7       7      7      7      8       8      8      9      9
    7 z    11 z    7 z    3 z    6 z    11 z    5 z    2 z    2 z
>   ---- + ----- + ---- + ---- + ---- + ----- + ---- + ---- + ----
     11      9       7      5     10      8       6      9      7
    a       a       a      a     a       a       a      a      a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 35]], Vassiliev[3][Knot[11, NonAlternating, 35]]}
Out[15]=   
{2, 3}
In[16]:=
Kh[Knot[11, NonAlternating, 35]][q, t]
Out[16]=   
   3    5      5        7        7  2      9  2      9  3      11  3
3 q  + q  + 4 q  t + 2 q  t + 7 q  t  + 4 q  t  + 7 q  t  + 7 q   t  + 
 
       11  4      13  4      13  5      15  5      15  6      17  6
>   8 q   t  + 7 q   t  + 7 q   t  + 8 q   t  + 5 q   t  + 7 q   t  + 
 
       17  7      19  7    19  8      21  8    23  9
>   3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n35
K11n34
K11n34
K11n36
K11n36