In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Show[DrawMorseLink[Knot[11, NonAlternating, 35]]] |
|  |
Out[2]= | -Graphics- |
In[3]:= | PD[Knot[11, NonAlternating, 35]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 13, 6, 12], X[2, 8, 3, 7],
> X[16, 9, 17, 10], X[18, 12, 19, 11], X[13, 7, 14, 6], X[20, 16, 21, 15],
> X[22, 17, 1, 18], X[14, 20, 15, 19], X[10, 22, 11, 21]] |
In[4]:= | GaussCode[Knot[11, NonAlternating, 35]] |
Out[4]= | GaussCode[1, -4, 2, -1, -3, 7, 4, -2, 5, -11, 6, 3, -7, -10, 8, -5, 9, -6, 10,
> -8, 11, -9] |
In[5]:= | DTCode[Knot[11, NonAlternating, 35]] |
Out[5]= | DTCode[4, 8, -12, 2, 16, 18, -6, 20, 22, 14, 10] |
In[6]:= | alex = Alexander[Knot[11, NonAlternating, 35]][t] |
Out[6]= | 2 10 20 2 3
25 - -- + -- - -- - 20 t + 10 t - 2 t
3 2 t
t t |
In[7]:= | Conway[Knot[11, NonAlternating, 35]][z] |
Out[7]= | 2 4 6
1 + 2 z - 2 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 92], Knot[11, Alternating, 153], Knot[11, Alternating, 224],
> Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]} |
In[9]:= | {KnotDet[Knot[11, NonAlternating, 35]], KnotSignature[Knot[11, NonAlternating, 35]]} |
Out[9]= | {89, 4} |
In[10]:= | J=Jones[Knot[11, NonAlternating, 35]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 11
3 q - 6 q + 11 q - 14 q + 15 q - 15 q + 12 q - 8 q + 4 q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]} |
In[12]:= | A2Invariant[Knot[11, NonAlternating, 35]][q] |
Out[12]= | 6 8 10 12 14 16 18 20 22 26 28
3 q - q + 4 q + q - 2 q + 2 q - 5 q + q - 2 q + 3 q - 2 q +
30 34
> 2 q - q |
In[13]:= | HOMFLYPT[Knot[11, NonAlternating, 35]][a, z] |
Out[13]= | 2 2 2 2 4 4 4 6
-10 4 7 5 z 7 z 12 z 8 z 3 z 8 z 3 z 2 z
-a + -- - -- + -- - --- + ---- - ----- + ---- + ---- - ---- + ---- - ----
8 6 4 10 8 6 4 8 6 4 6
a a a a a a a a a a a |
In[14]:= | Kauffman[Knot[11, NonAlternating, 35]][a, z] |
Out[14]= | 2 2 2 2
-10 4 7 5 2 z 6 z 8 z 4 z 2 z 2 z 10 z 21 z
a + -- + -- + -- - --- - --- - --- - --- + ---- + ---- - ----- - ----- -
8 6 4 11 9 7 5 12 10 8 6
a a a a a a a a a a a
2 3 3 3 3 3 4 4 4 4
11 z z 6 z 23 z 20 z 4 z 6 z 5 z 16 z 21 z
> ----- - --- + ---- + ----- + ----- + ---- - ---- - ---- + ----- + ----- +
4 13 11 9 7 5 12 10 8 6
a a a a a a a a a a
4 5 5 5 5 5 6 6 6 6
6 z z 12 z 30 z 20 z 3 z 4 z 5 z 20 z 11 z
> ---- + --- - ----- - ----- - ----- - ---- + ---- - ---- - ----- - ----- +
4 13 11 9 7 5 12 10 8 6
a a a a a a a a a a
7 7 7 7 8 8 8 9 9
7 z 11 z 7 z 3 z 6 z 11 z 5 z 2 z 2 z
> ---- + ----- + ---- + ---- + ---- + ----- + ---- + ---- + ----
11 9 7 5 10 8 6 9 7
a a a a a a a a a |
In[15]:= | {Vassiliev[2][Knot[11, NonAlternating, 35]], Vassiliev[3][Knot[11, NonAlternating, 35]]} |
Out[15]= | {2, 3} |
In[16]:= | Kh[Knot[11, NonAlternating, 35]][q, t] |
Out[16]= | 3 5 5 7 7 2 9 2 9 3 11 3
3 q + q + 4 q t + 2 q t + 7 q t + 4 q t + 7 q t + 7 q t +
11 4 13 4 13 5 15 5 15 6 17 6
> 8 q t + 7 q t + 7 q t + 8 q t + 5 q t + 7 q t +
17 7 19 7 19 8 21 8 23 9
> 3 q t + 5 q t + q t + 3 q t + q t |