© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n152
K11n152
K11n154
K11n154
K11n153
Knotscape
This page is passe. Go here instead!

   The Knot K11n153

Visit K11n153's page at Knotilus!

Acknowledgement

K11n153 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8394 X12,6,13,5 X20,8,21,7 X16,9,17,10 X18,11,19,12 X13,1,14,22 X4,16,5,15 X10,17,11,18 X2,19,3,20 X21,15,22,14

Gauss Code: {1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, -7, 11, 8, -5, 9, -6, 10, -4, -11, 7}

DT (Dowker-Thistlethwaite) Code: 6 8 12 20 16 18 -22 4 10 2 -14

Alexander Polynomial: t-4 - 4t-3 + 7t-2 - 10t-1 + 13 - 10t + 7t2 - 4t3 + t4

Conway Polynomial: 1 - 2z2 + 3z4 + 4z6 + z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {57, 0}

Jones Polynomial: - q-5 + 3q-4 - 5q-3 + 8q-2 - 9q-1 + 10 - 9q + 6q2 - 4q3 + 2q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-14 + q-12 - q-10 + 2q-8 + q-6 + 3q-2 - 2 + 2q2 - 3q4 - q6 - q10 + 2q12 + q16

HOMFLY-PT Polynomial: 2a-4 + a-4z2 - 4a-2 - 8a-2z2 - 5a-2z4 - a-2z6 + 3 + 9z2 + 12z4 + 6z6 + z8 - 4a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: 2a-4 - 7a-4z2 + 3a-4z4 + 3a-3z - 6a-3z3 + a-3z5 + a-3z7 + 4a-2 - 21a-2z2 + 25a-2z4 - 12a-2z6 + 3a-2z8 + 3a-1z - 7a-1z3 + 11a-1z5 - 6a-1z7 + 2a-1z9 + 3 - 21z2 + 41z4 - 26z6 + 7z8 - az + 5az3 - 3az7 + 2az9 - 5a2z2 + 12a2z4 - 11a2z6 + 4a2z8 - a3z + 4a3z3 - 9a3z5 + 4a3z7 + 2a4z2 - 7a4z4 + 3a4z6 - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9         2
j = 7        2 
j = 5       42 
j = 3      52  
j = 1     54   
j = -1    56    
j = -3   34     
j = -5  25      
j = -7 13       
j = -9 2        
j = -111         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 153]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 153]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[12, 6, 13, 5], X[20, 8, 21, 7], 
 
>   X[16, 9, 17, 10], X[18, 11, 19, 12], X[13, 1, 14, 22], X[4, 16, 5, 15], 
 
>   X[10, 17, 11, 18], X[2, 19, 3, 20], X[21, 15, 22, 14]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 153]]
Out[4]=   
GaussCode[1, -10, 2, -8, 3, -1, 4, -2, 5, -9, 6, -3, -7, 11, 8, -5, 9, -6, 10, 
 
>   -4, -11, 7]
In[5]:=
DTCode[Knot[11, NonAlternating, 153]]
Out[5]=   
DTCode[6, 8, 12, 20, 16, 18, -22, 4, 10, 2, -14]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 153]][t]
Out[6]=   
      -4   4    7    10             2      3    4
13 + t   - -- + -- - -- - 10 t + 7 t  - 4 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, NonAlternating, 153]][z]
Out[7]=   
       2      4      6    8
1 - 2 z  + 3 z  + 4 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 153]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 153]], KnotSignature[Knot[11, NonAlternating, 153]]}
Out[9]=   
{57, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 153]][q]
Out[10]=   
      -5   3    5    8    9            2      3      4
10 - q   + -- - -- + -- - - - 9 q + 6 q  - 4 q  + 2 q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 153]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 153]][q]
Out[12]=   
      -14    -12    -10   2     -6   3       2      4    6    10      12    16
-2 - q    + q    - q    + -- + q   + -- + 2 q  - 3 q  - q  - q   + 2 q   + q
                           8          2
                          q          q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 153]][a, z]
Out[13]=   
                      2      2                        4                     6
    2    4       2   z    8 z       2  2       4   5 z       2  4      6   z
3 + -- - -- + 9 z  + -- - ---- - 4 a  z  + 12 z  - ---- - 4 a  z  + 6 z  - -- - 
     4    2           4     2                        2                      2
    a    a           a     a                        a                      a
 
     2  6    8
>   a  z  + z
In[14]:=
Kauffman[Knot[11, NonAlternating, 153]][a, z]
Out[14]=   
                                                  2       2
    2    4    3 z   3 z          3         2   7 z    21 z       2  2
3 + -- + -- + --- + --- - a z - a  z - 21 z  - ---- - ----- - 5 a  z  + 
     4    2    3     a                           4      2
    a    a    a                                 a      a
 
                 3      3                                           4       4
       4  2   6 z    7 z         3      3  3      5  3       4   3 z    25 z
>   2 a  z  - ---- - ---- + 5 a z  + 4 a  z  - 2 a  z  + 41 z  + ---- + ----- + 
                3     a                                            4      2
               a                                                  a      a
 
                          5       5                                 6
        2  4      4  4   z    11 z       3  5    5  5       6   12 z
>   12 a  z  - 7 a  z  + -- + ----- - 9 a  z  + a  z  - 26 z  - ----- - 
                          3     a                                 2
                         a                                       a
 
                          7      7                                8
        2  6      4  6   z    6 z         7      3  7      8   3 z       2  8
>   11 a  z  + 3 a  z  + -- - ---- - 3 a z  + 4 a  z  + 7 z  + ---- + 4 a  z  + 
                          3    a                                 2
                         a                                      a
 
       9
    2 z         9
>   ---- + 2 a z
     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 153]], Vassiliev[3][Knot[11, NonAlternating, 153]]}
Out[15]=   
{-2, -2}
In[16]:=
Kh[Knot[11, NonAlternating, 153]][q, t]
Out[16]=   
6           1        2       1       3       2       5       3      4      5
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2      5  3      7  3      9  4
>   4 q t + 5 q  t + 2 q  t  + 4 q  t  + 2 q  t  + 2 q  t  + 2 q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n153
K11n152
K11n152
K11n154
K11n154