© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n151
K11n151
K11n153
K11n153
K11n152
Knotscape
This page is passe. Go here instead!

   The Knot K11n152

Visit K11n152's page at Knotilus!

Acknowledgement

K11n152 as Morse Link
DrawMorseLink

PD Presentation: X6271 X8493 X12,5,13,6 X2837 X9,19,10,18 X11,20,12,21 X4,13,5,14 X15,11,16,10 X17,1,18,22 X19,14,20,15 X21,17,22,16

Gauss Code: {1, -4, 2, -7, 3, -1, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 5, -10, 6, -11, 9}

DT (Dowker-Thistlethwaite) Code: 6 8 12 2 -18 -20 4 -10 -22 -14 -16

Alexander Polynomial: - 2t-2 + 6t-1 - 7 + 6t - 2t2

Conway Polynomial: 1 - 2z2 - 2z4

Other knots with the same Alexander/Conway Polynomial: {86, K11n20, K11n151, ...}

Determinant and Signature: {23, 2}

Jones Polynomial: q-2 - q-1 + 1 + q - 3q2 + 4q3 - 5q4 + 5q5 - 4q6 + 3q7 - q8

Other knots (up to mirrors) with the same Jones Polynomial: {K11n151, ...}

A2 (sl(3)) Invariant: q-6 + q-4 + 2q-2 + q2 - 2q4 - 2q6 - 2q10 + 2q12 + 2q16 + q18 - q20 + q22 - q24

HOMFLY-PT Polynomial: - a-6 - 2a-6z2 - a-6z4 + 5a-4 + 9a-4z2 + 5a-4z4 + a-4z6 - 7a-2 - 13a-2z2 - 7a-2z4 - a-2z6 + 4 + 4z2 + z4

Kauffman Polynomial: - 2a-9z3 + a-9z5 + 3a-8z2 - 8a-8z4 + 3a-8z6 - 2a-7z + 4a-7z3 - 8a-7z5 + 3a-7z7 + a-6 + 2a-6z2 - 5a-6z4 + a-6z8 - 6a-5z + 15a-5z3 - 11a-5z5 + 3a-5z7 + 5a-4 - 19a-4z2 + 28a-4z4 - 13a-4z6 + 2a-4z8 - 4a-3z + 2a-3z3 + 11a-3z5 - 7a-3z7 + a-3z9 + 7a-2 - 31a-2z2 + 40a-2z4 - 17a-2z6 + 2a-2z8 - 7a-1z3 + 13a-1z5 - 7a-1z7 + a-1z9 + 4 - 13z2 + 15z4 - 7z6 + z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11152. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 17           1
j = 15          2 
j = 13         21 
j = 11        32  
j = 9      132   
j = 7      23    
j = 5    133     
j = 3   112      
j = 1   13       
j = -1 11         
j = -3            
j = -51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 152]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 152]]
Out[3]=   
PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 5, 13, 6], X[2, 8, 3, 7], 
 
>   X[9, 19, 10, 18], X[11, 20, 12, 21], X[4, 13, 5, 14], X[15, 11, 16, 10], 
 
>   X[17, 1, 18, 22], X[19, 14, 20, 15], X[21, 17, 22, 16]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 152]]
Out[4]=   
GaussCode[1, -4, 2, -7, 3, -1, 4, -2, -5, 8, -6, -3, 7, 10, -8, 11, -9, 5, -10, 
 
>   6, -11, 9]
In[5]:=
DTCode[Knot[11, NonAlternating, 152]]
Out[5]=   
DTCode[6, 8, 12, 2, -18, -20, 4, -10, -22, -14, -16]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 152]][t]
Out[6]=   
     2    6            2
-7 - -- + - + 6 t - 2 t
      2   t
     t
In[7]:=
Conway[Knot[11, NonAlternating, 152]][z]
Out[7]=   
       2      4
1 - 2 z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[8, 6], Knot[11, NonAlternating, 20], Knot[11, NonAlternating, 151], 
 
>   Knot[11, NonAlternating, 152]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 152]], KnotSignature[Knot[11, NonAlternating, 152]]}
Out[9]=   
{23, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 152]][q]
Out[10]=   
     -2   1          2      3      4      5      6      7    8
1 + q   - - + q - 3 q  + 4 q  - 5 q  + 5 q  - 4 q  + 3 q  - q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 151], Knot[11, NonAlternating, 152]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 152]][q]
Out[12]=   
 -6    -4   2     2      4      6      10      12      16    18    20    22
q   + q   + -- + q  - 2 q  - 2 q  - 2 q   + 2 q   + 2 q   + q   - q   + q   - 
             2
            q
 
     24
>   q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 152]][a, z]
Out[13]=   
                              2      2       2         4      4      4    6    6
     -6   5    7       2   2 z    9 z    13 z     4   z    5 z    7 z    z    z
4 - a   + -- - -- + 4 z  - ---- + ---- - ----- + z  - -- + ---- - ---- + -- - --
           4    2            6      4      2           6     4      2     4    2
          a    a            a      a      a           a     a      a     a    a
In[14]:=
Kauffman[Knot[11, NonAlternating, 152]][a, z]
Out[14]=   
                                                 2      2       2       2
     -6   5    7    2 z   6 z   4 z       2   3 z    2 z    19 z    31 z
4 + a   + -- + -- - --- - --- - --- - 13 z  + ---- + ---- - ----- - ----- - 
           4    2    7     5     3              8      6      4       2
          a    a    a     a     a              a      a      a       a
 
       3      3       3      3      3              4      4       4       4
    2 z    4 z    15 z    2 z    7 z        4   8 z    5 z    28 z    40 z
>   ---- + ---- + ----- + ---- - ---- + 15 z  - ---- - ---- + ----- + ----- + 
      9      7      5       3     a               8      6      4       2
     a      a      a       a                     a      a      a       a
 
     5      5       5       5       5             6       6       6      7
    z    8 z    11 z    11 z    13 z       6   3 z    13 z    17 z    3 z
>   -- - ---- - ----- + ----- + ----- - 7 z  + ---- - ----- - ----- + ---- + 
     9     7      5       3       a              8      4       2       7
    a     a      a       a                      a      a       a       a
 
       7      7      7         8      8      8    9    9
    3 z    7 z    7 z     8   z    2 z    2 z    z    z
>   ---- - ---- - ---- + z  + -- + ---- + ---- + -- + --
      5      3     a           6     4      2     3   a
     a      a                 a     a      a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 152]], Vassiliev[3][Knot[11, NonAlternating, 152]]}
Out[15]=   
{-2, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 152]][q, t]
Out[16]=   
                                           3
       3    5     1      1      1     q   q       3        5        5  2
3 q + q  + q  + ----- + ---- + ---- + - + -- + 2 q  t + 3 q  t + 3 q  t  + 
                 5  4      3      2   t   t
                q  t    q t    q t
 
       7  2    9  2      7  3      9  3      9  4      11  4      11  5
>   2 q  t  + q  t  + 3 q  t  + 3 q  t  + 2 q  t  + 3 q   t  + 2 q   t  + 
 
       13  5    13  6      15  6    17  7
>   2 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n152
K11n151
K11n151
K11n153
K11n153