© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n115
K11n115
K11n117
K11n117
K11n116
Knotscape
This page is passe. Go here instead!

   The Knot K11n116

Visit K11n116's page at Knotilus!

Acknowledgement

K11n116 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,14,6,15 X7,19,8,18 X9,17,10,16 X2,11,3,12 X20,13,21,14 X15,22,16,1 X17,9,18,8 X12,19,13,20 X21,7,22,6

Gauss Code: {1, -6, 2, -1, -3, 11, -4, 9, -5, -2, 6, -10, 7, 3, -8, 5, -9, 4, 10, -7, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 -18 -16 2 20 -22 -8 12 -6

Alexander Polynomial: - t-2 + 3 - t2

Conway Polynomial: 1 - 4z2 - z4

Other knots with the same Alexander/Conway Polynomial: {K11n49, ...}

Determinant and Signature: {1, 0}

Jones Polynomial: q-6 - q-5 + q-4 - q-3 + q - q2 + q3

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-20 + q-18 - q-12 - q-2 + q6 + q8 + q10

HOMFLY-PT Polynomial: 2a-2 + a-2z2 - 2 - 4z2 - z4 + a2 - a4 - a4z2 + a6

Kauffman Polynomial: - 2a-2 + 6a-2z2 - 5a-2z4 + a-2z6 + 5a-1z3 - 5a-1z5 + a-1z7 - 2 + 8z2 - 6z4 + z6 + 2az - 2az3 - a2 + a2z2 - a2z4 - a3z3 - a4 + 5a4z2 - 5a4z4 + a4z6 - 2a5z + 6a5z3 - 5a5z5 + a5z7 - a6 + 6a6z2 - 5a6z4 + a6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {-4, 3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11116. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 7          1
j = 5           
j = 3        11 
j = 1      21   
j = -1      11   
j = -3    121    
j = -5   1       
j = -7   11      
j = -9 11        
j = -11           
j = -131          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 116]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 116]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 14, 6, 15], X[7, 19, 8, 18], 
 
>   X[9, 17, 10, 16], X[2, 11, 3, 12], X[20, 13, 21, 14], X[15, 22, 16, 1], 
 
>   X[17, 9, 18, 8], X[12, 19, 13, 20], X[21, 7, 22, 6]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 116]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 11, -4, 9, -5, -2, 6, -10, 7, 3, -8, 5, -9, 4, 10, 
 
>   -7, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 116]]
Out[5]=   
DTCode[4, 10, -14, -18, -16, 2, 20, -22, -8, 12, -6]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 116]][t]
Out[6]=   
     -2    2
3 - t   - t
In[7]:=
Conway[Knot[11, NonAlternating, 116]][z]
Out[7]=   
       2    4
1 - 4 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 49], Knot[11, NonAlternating, 116]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 116]], KnotSignature[Knot[11, NonAlternating, 116]]}
Out[9]=   
{1, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 116]][q]
Out[10]=   
 -6    -5    -4    -3        2    3
q   - q   + q   - q   + q - q  + q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 116]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 116]][q]
Out[12]=   
 -20    -18    -12    -2    6    8    10
q    + q    - q    - q   + q  + q  + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 116]][a, z]
Out[13]=   
                                 2
     2     2    4    6      2   z     4  2    4
-2 + -- + a  - a  + a  - 4 z  + -- - a  z  - z
      2                          2
     a                          a
In[14]:=
Kauffman[Knot[11, NonAlternating, 116]][a, z]
Out[14]=   
                                                    2
     2     2    4    6              5        2   6 z     2  2      4  2
-2 - -- - a  - a  - a  + 2 a z - 2 a  z + 8 z  + ---- + a  z  + 5 a  z  + 
      2                                            2
     a                                            a
 
                 3                                        4
       6  2   5 z         3    3  3      5  3      4   5 z     2  4      4  4
>   6 a  z  + ---- - 2 a z  - a  z  + 6 a  z  - 6 z  - ---- - a  z  - 5 a  z  - 
               a                                         2
                                                        a
 
                 5                   6                    7
       6  4   5 z       5  5    6   z     4  6    6  6   z     5  7
>   5 a  z  - ---- - 5 a  z  + z  + -- + a  z  + a  z  + -- + a  z
               a                     2                   a
                                    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 116]], Vassiliev[3][Knot[11, NonAlternating, 116]]}
Out[15]=   
{-4, 3}
In[16]:=
Kh[Knot[11, NonAlternating, 116]][q, t]
Out[16]=   
 -3   1           1        1       1       1       1       1       1      2
q   + - + 2 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
      q          13  6    9  5    9  4    7  3    5  3    7  2    3  2    3
                q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
    t          3  2    3  3    7  4
>   - + q t + q  t  + q  t  + q  t
    q


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n116
K11n115
K11n115
K11n117
K11n117