© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n114
K11n114
K11n116
K11n116
K11n115
Knotscape
This page is passe. Go here instead!

   The Knot K11n115

Visit K11n115's page at Knotilus!

Acknowledgement

K11n115 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X14,6,15,5 X7,19,8,18 X9,17,10,16 X2,11,3,12 X20,13,21,14 X22,16,1,15 X17,9,18,8 X12,19,13,20 X6,21,7,22

Gauss Code: {1, -6, 2, -1, 3, -11, -4, 9, -5, -2, 6, -10, 7, -3, 8, 5, -9, 4, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 -18 -16 2 20 22 -8 12 6

Alexander Polynomial: - t-3 + 6t-2 - 18t-1 + 27 - 18t + 6t2 - t3

Conway Polynomial: 1 - 3z2 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {77, 0}

Jones Polynomial: - q-5 + 4q-4 - 7q-3 + 11q-2 - 13q-1 + 13 - 12q + 9q2 - 5q3 + 2q4

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 2q-10 + 3q-8 - q-4 + 2q-2 - 3 + 2q2 - 3q4 + 2q8 - 2q10 + 2q12 + q14

HOMFLY-PT Polynomial: a-4 + a-2z4 - 2 - 5z2 - 3z4 - z6 + 2a2 + 3a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: a-4 - 4a-4z2 + 3a-4z4 + a-3z - 4a-3z3 + 3a-3z5 + a-3z7 - a-2z2 - a-2z4 + a-2z6 + 2a-2z8 - 2a-1z + 6a-1z3 - 10a-1z5 + 6a-1z7 + a-1z9 - 2 + 12z2 - 14z4 - z6 + 6z8 - 4az + 15az3 - 24az5 + 11az7 + az9 - 2a2 + 12a2z2 - 17a2z4 + 2a2z6 + 4a2z8 - a3z + 4a3z3 - 10a3z5 + 6a3z7 + 3a4z2 - 7a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-3, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11115. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9         2
j = 7        3 
j = 5       62 
j = 3      63  
j = 1     76   
j = -1    77    
j = -3   46     
j = -5  37      
j = -7 14       
j = -9 3        
j = -111         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 115]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 115]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[7, 19, 8, 18], 
 
>   X[9, 17, 10, 16], X[2, 11, 3, 12], X[20, 13, 21, 14], X[22, 16, 1, 15], 
 
>   X[17, 9, 18, 8], X[12, 19, 13, 20], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 115]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -11, -4, 9, -5, -2, 6, -10, 7, -3, 8, 5, -9, 4, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, NonAlternating, 115]]
Out[5]=   
DTCode[4, 10, 14, -18, -16, 2, 20, 22, -8, 12, 6]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 115]][t]
Out[6]=   
      -3   6    18             2    3
27 - t   + -- - -- - 18 t + 6 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 115]][z]
Out[7]=   
       2    6
1 - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 115]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 115]], KnotSignature[Knot[11, NonAlternating, 115]]}
Out[9]=   
{77, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 115]][q]
Out[10]=   
      -5   4    7    11   13             2      3      4
13 - q   + -- - -- + -- - -- - 12 q + 9 q  - 5 q  + 2 q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 115]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 115]][q]
Out[12]=   
      -16    -14    2     2    3     -4   2       2      4      8      10
-3 - q    + q    + --- - --- + -- - q   + -- + 2 q  - 3 q  + 2 q  - 2 q   + 
                    12    10    8          2
                   q     q     q          q
 
       12    14
>   2 q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 115]][a, z]
Out[13]=   
                                                   4
      -4      2      2      2  2    4  2      4   z       2  4    6
-2 + a   + 2 a  - 5 z  + 3 a  z  - a  z  - 3 z  + -- + 2 a  z  - z
                                                   2
                                                  a
In[14]:=
Kauffman[Knot[11, NonAlternating, 115]][a, z]
Out[14]=   
                                                       2    2
      -4      2   z    2 z            3         2   4 z    z        2  2
-2 + a   - 2 a  + -- - --- - 4 a z - a  z + 12 z  - ---- - -- + 12 a  z  + 
                   3    a                             4     2
                  a                                  a     a
 
                 3      3                                          4    4
       4  2   4 z    6 z          3      3  3    5  3       4   3 z    z
>   3 a  z  - ---- + ---- + 15 a z  + 4 a  z  - a  z  - 14 z  + ---- - -- - 
                3     a                                           4     2
               a                                                 a     a
 
                            5       5                                      6
        2  4      4  4   3 z    10 z          5       3  5    5  5    6   z
>   17 a  z  - 7 a  z  + ---- - ----- - 24 a z  - 10 a  z  + a  z  - z  + -- + 
                           3      a                                        2
                          a                                               a
 
                         7      7                                 8
       2  6      4  6   z    6 z          7      3  7      8   2 z       2  8
>   2 a  z  + 4 a  z  + -- + ---- + 11 a z  + 6 a  z  + 6 z  + ---- + 4 a  z  + 
                         3    a                                  2
                        a                                       a
 
     9
    z       9
>   -- + a z
    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 115]], Vassiliev[3][Knot[11, NonAlternating, 115]]}
Out[15]=   
{-3, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 115]][q, t]
Out[16]=   
7           1        3       1       4       3       7       4      6      7
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2    3     q t
          q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
               3        3  2      5  2      5  3      7  3      9  4
>   6 q t + 6 q  t + 3 q  t  + 6 q  t  + 2 q  t  + 3 q  t  + 2 q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n115
K11n114
K11n114
K11n116
K11n116