© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n110
K11n110
K11n112
K11n112
K11n111
Knotscape
This page is passe. Go here instead!

   The Knot K11n111

Visit K11n111's page at Knotilus!

Acknowledgement

K11n111 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X5,14,6,15 X7,17,8,16 X9,19,10,18 X2,11,3,12 X13,21,14,20 X15,22,16,1 X17,9,18,8 X19,13,20,12 X21,7,22,6

Gauss Code: {1, -6, 2, -1, -3, 11, -4, 9, -5, -2, 6, 10, -7, 3, -8, 4, -9, 5, -10, 7, -11, 8}

DT (Dowker-Thistlethwaite) Code: 4 10 -14 -16 -18 2 -20 -22 -8 -12 -6

Alexander Polynomial: - t-3 + t-2 + 3t-1 - 5 + 3t + t2 - t3

Conway Polynomial: 1 - 2z2 - 5z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {7, 2}

Jones Polynomial: q-2 - q-1 + 1 - q2 + 2q3 - 2q4 + 2q5 - 2q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-6 + q-4 + q-2 + q2 - q4 - q6 - q10 + q12 + q16 - q20 + q22

HOMFLY-PT Polynomial: a-6z2 + 2a-4 + 2a-4z2 - 4a-2 - 9a-2z2 - 6a-2z4 - a-2z6 + 3 + 4z2 + z4

Kauffman Polynomial: - 2a-8z2 + a-8z4 + a-7z - 5a-7z3 + 2a-7z5 - 2a-6z4 + a-6z6 + a-5z - 2a-5z3 + a-5z5 + 2a-4 - 8a-4z2 + 14a-4z4 - 7a-4z6 + a-4z8 + a-3z - 6a-3z3 + 13a-3z5 - 7a-3z7 + a-3z9 + 4a-2 - 22a-2z2 + 32a-2z4 - 15a-2z6 + 2a-2z8 + a-1z - 9a-1z3 + 14a-1z5 - 7a-1z7 + a-1z9 + 3 - 12z2 + 15z4 - 7z6 + z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 11111. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15          1
j = 13         1 
j = 11        11 
j = 9      121  
j = 7      11   
j = 5    122    
j = 3   111     
j = 1   12      
j = -1 11        
j = -3           
j = -51          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 111]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 111]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[5, 14, 6, 15], X[7, 17, 8, 16], 
 
>   X[9, 19, 10, 18], X[2, 11, 3, 12], X[13, 21, 14, 20], X[15, 22, 16, 1], 
 
>   X[17, 9, 18, 8], X[19, 13, 20, 12], X[21, 7, 22, 6]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 111]]
Out[4]=   
GaussCode[1, -6, 2, -1, -3, 11, -4, 9, -5, -2, 6, 10, -7, 3, -8, 4, -9, 5, -10, 
 
>   7, -11, 8]
In[5]:=
DTCode[Knot[11, NonAlternating, 111]]
Out[5]=   
DTCode[4, 10, -14, -16, -18, 2, -20, -22, -8, -12, -6]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 111]][t]
Out[6]=   
      -3    -2   3          2    3
-5 - t   + t   + - + 3 t + t  - t
                 t
In[7]:=
Conway[Knot[11, NonAlternating, 111]][z]
Out[7]=   
       2      4    6
1 - 2 z  - 5 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 111]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 111]], KnotSignature[Knot[11, NonAlternating, 111]]}
Out[9]=   
{7, 2}
In[10]:=
J=Jones[Knot[11, NonAlternating, 111]][q]
Out[10]=   
     -2   1    2      3      4      5      6    7
1 + q   - - - q  + 2 q  - 2 q  + 2 q  - 2 q  + q
          q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 111]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 111]][q]
Out[12]=   
 -6    -4    -2    2    4    6    10    12    16    20    22
q   + q   + q   + q  - q  - q  - q   + q   + q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 111]][a, z]
Out[13]=   
                      2      2      2           4    6
    2    4       2   z    2 z    9 z     4   6 z    z
3 + -- - -- + 4 z  + -- + ---- - ---- + z  - ---- - --
     4    2           6     4      2           2     2
    a    a           a     a      a           a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 111]][a, z]
Out[14]=   
                                            2      2       2      3      3
    2    4    z    z    z    z       2   2 z    8 z    22 z    5 z    2 z
3 + -- + -- + -- + -- + -- + - - 12 z  - ---- - ---- - ----- - ---- - ---- - 
     4    2    7    5    3   a             8      4      2       7      5
    a    a    a    a    a                 a      a      a       a      a
 
       3      3            4      4       4       4      5    5       5
    6 z    9 z        4   z    2 z    14 z    32 z    2 z    z    13 z
>   ---- - ---- + 15 z  + -- - ---- + ----- + ----- + ---- + -- + ----- + 
      3     a              8     6      4       2       7     5     3
     a                    a     a      a       a       a     a     a
 
        5           6      6       6      7      7         8      8    9    9
    14 z       6   z    7 z    15 z    7 z    7 z     8   z    2 z    z    z
>   ----- - 7 z  + -- - ---- - ----- - ---- - ---- + z  + -- + ---- + -- + --
      a             6     4      2       3     a           4     2     3   a
                   a     a      a       a                 a     a     a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 111]], Vassiliev[3][Knot[11, NonAlternating, 111]]}
Out[15]=   
{-2, -2}
In[16]:=
Kh[Knot[11, NonAlternating, 111]][q, t]
Out[16]=   
                                           3
       3    5     1      1      1     q   q     3        5        5  2
2 q + q  + q  + ----- + ---- + ---- + - + -- + q  t + 2 q  t + 2 q  t  + 
                 5  4      3      2   t   t
                q  t    q t    q t
 
     7  2    9  2    7  3      9  3    9  4    11  4    11  5    13  5    15  6
>   q  t  + q  t  + q  t  + 2 q  t  + q  t  + q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n111
K11n110
K11n110
K11n112
K11n112