© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11n109
K11n109
K11n111
K11n111
K11n110
Knotscape
This page is passe. Go here instead!

   The Knot K11n110

Visit K11n110's page at Knotilus!

Acknowledgement

K11n110 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X14,6,15,5 X7,17,8,16 X9,19,10,18 X2,11,3,12 X20,13,21,14 X22,16,1,15 X17,9,18,8 X12,19,13,20 X6,21,7,22

Gauss Code: {1, -6, 2, -1, 3, -11, -4, 9, -5, -2, 6, -10, 7, -3, 8, 4, -9, 5, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 10 14 -16 -18 2 20 22 -8 12 6

Alexander Polynomial: - t-3 + 4t-2 - 9t-1 + 13 - 9t + 4t2 - t3

Conway Polynomial: 1 - 2z2 - 2z4 - z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {41, 0}

Jones Polynomial: 2q-2 - 4q-1 + 6 - 7q + 7q2 - 6q3 + 5q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q-8 + 2q-6 - q-4 + q-2 - 1 - q2 + q4 - q6 + 2q8 - q10 + q14 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - a-2 - 5a-2z2 - 4a-2z4 - a-2z6 + z2 + z4 + a2

Kauffman Polynomial: 2a-6z2 - 3a-6z4 + a-6z6 - a-5z + 7a-5z3 - 10a-5z5 + 3a-5z7 + a-4 - 2a-4z2 + 5a-4z4 - 9a-4z6 + 3a-4z8 - a-3z + 7a-3z3 - 10a-3z5 + a-3z7 + a-3z9 + a-2 - 7a-2z2 + 14a-2z4 - 13a-2z6 + 4a-2z8 - a-1z + 2a-1z3 + a-1z5 - 2a-1z7 + a-1z9 - z2 + 6z4 - 3z6 + z8 - az + 2az3 + az5 - a2 + 2a2z2

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 11110. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13        1
j = 11       2 
j = 9      31 
j = 7     32  
j = 5    43   
j = 3   33    
j = 1  34     
j = -1 24      
j = -3 2       
j = -52        


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, NonAlternating, 110]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, NonAlternating, 110]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[14, 6, 15, 5], X[7, 17, 8, 16], 
 
>   X[9, 19, 10, 18], X[2, 11, 3, 12], X[20, 13, 21, 14], X[22, 16, 1, 15], 
 
>   X[17, 9, 18, 8], X[12, 19, 13, 20], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, NonAlternating, 110]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -11, -4, 9, -5, -2, 6, -10, 7, -3, 8, 4, -9, 5, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, NonAlternating, 110]]
Out[5]=   
DTCode[4, 10, 14, -16, -18, 2, 20, 22, -8, 12, 6]
In[6]:=
alex = Alexander[Knot[11, NonAlternating, 110]][t]
Out[6]=   
      -3   4    9            2    3
13 - t   + -- - - - 9 t + 4 t  - t
            2   t
           t
In[7]:=
Conway[Knot[11, NonAlternating, 110]][z]
Out[7]=   
       2      4    6
1 - 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, NonAlternating, 110]}
In[9]:=
{KnotDet[Knot[11, NonAlternating, 110]], KnotSignature[Knot[11, NonAlternating, 110]]}
Out[9]=   
{41, 0}
In[10]:=
J=Jones[Knot[11, NonAlternating, 110]][q]
Out[10]=   
    2    4            2      3      4      5    6
6 + -- - - - 7 q + 7 q  - 6 q  + 5 q  - 3 q  + q
     2   q
    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, NonAlternating, 110]}
In[12]:=
A2Invariant[Knot[11, NonAlternating, 110]][q]
Out[12]=   
      -8   2     -4    -2    2    4    6      8    10    14    16    18
-1 + q   + -- - q   + q   - q  + q  - q  + 2 q  - q   + q   - q   + q
            6
           q
In[13]:=
HOMFLYPT[Knot[11, NonAlternating, 110]][a, z]
Out[13]=   
                         2      2         4      4    6
 -4    -2    2    2   2 z    5 z     4   z    4 z    z
a   - a   + a  + z  + ---- - ---- + z  + -- - ---- - --
                        4      2          4     2     2
                       a      a          a     a     a
In[14]:=
Kauffman[Knot[11, NonAlternating, 110]][a, z]
Out[14]=   
                                             2      2      2                3
 -4    -2    2   z    z    z          2   2 z    2 z    7 z       2  2   7 z
a   + a   - a  - -- - -- - - - a z - z  + ---- - ---- - ---- + 2 a  z  + ---- + 
                  5    3   a                6      4      2                5
                 a    a                    a      a      a                a
 
       3      3                      4      4       4       5       5    5
    7 z    2 z         3      4   3 z    5 z    14 z    10 z    10 z    z
>   ---- + ---- + 2 a z  + 6 z  - ---- + ---- + ----- - ----- - ----- + -- + 
      3     a                       6      4      2       5       3     a
     a                             a      a      a       a       a
 
                   6      6       6      7    7      7           8      8
       5      6   z    9 z    13 z    3 z    z    2 z     8   3 z    4 z
>   a z  - 3 z  + -- - ---- - ----- + ---- + -- - ---- + z  + ---- + ---- + 
                   6     4      2       5     3    a            4      2
                  a     a      a       a     a                 a      a
 
     9    9
    z    z
>   -- + --
     3   a
    a
In[15]:=
{Vassiliev[2][Knot[11, NonAlternating, 110]], Vassiliev[3][Knot[11, NonAlternating, 110]]}
Out[15]=   
{-2, -1}
In[16]:=
Kh[Knot[11, NonAlternating, 110]][q, t]
Out[16]=   
4           2      2      2               3        3  2      5  2      5  3
- + 3 q + ----- + ---- + --- + 4 q t + 3 q  t + 3 q  t  + 4 q  t  + 3 q  t  + 
q          5  2    3     q t
          q  t    q  t
 
       7  3      7  4      9  4    9  5      11  5    13  6
>   3 q  t  + 2 q  t  + 3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11n110
K11n109
K11n109
K11n111
K11n111