© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a86
K11a86
K11a88
K11a88
K11a87
Knotscape
This page is passe. Go here instead!

   The Knot K11a87

Visit K11a87's page at Knotilus!

Acknowledgement

K11a87 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X12,6,13,5 X16,8,17,7 X18,10,19,9 X2,11,3,12 X20,13,21,14 X8,16,9,15 X6,18,7,17 X22,19,1,20 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -9, 4, -8, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, -7, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 10 12 16 18 2 20 8 6 22 14

Alexander Polynomial: - 2t-3 + 11t-2 - 28t-1 + 39 - 28t + 11t2 - 2t3

Conway Polynomial: 1 - 2z2 - z4 - 2z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {121, 0}

Jones Polynomial: - q-5 + 4q-4 - 8q-3 + 13q-2 - 17q-1 + 20 - 19q + 16q2 - 12q3 + 7q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a28, K11a96, ...}

A2 (sl(3)) Invariant: - q-16 + q-14 + 2q-12 - 3q-10 + 2q-8 - 2q-4 + 5q-2 - 1 + 3q2 - 2q4 - 3q6 + 2q8 - 4q10 + 2q12 + 2q14 - q16 + q18

HOMFLY-PT Polynomial: 2a-4 + 2a-4z2 + a-4z4 - 4a-2 - 6a-2z2 - 3a-2z4 - a-2z6 + 3 + z2 - z4 - z6 + 2a2z2 + 2a2z4 - a4z2

Kauffman Polynomial: 2a-6z2 - 3a-6z4 + a-6z6 - 2a-5z + 6a-5z3 - 8a-5z5 + 3a-5z7 + 2a-4 - 7a-4z2 + 12a-4z4 - 13a-4z6 + 5a-4z8 - 3a-3z + 8a-3z3 - 6a-3z5 - 4a-3z7 + 4a-3z9 + 4a-2 - 21a-2z2 + 41a-2z4 - 37a-2z6 + 12a-2z8 + a-2z10 - 3a-1z + 12a-1z3 - 8a-1z5 - 8a-1z7 + 8a-1z9 + 3 - 13z2 + 31z4 - 34z6 + 14z8 + z10 - 3az + 16az3 - 22az5 + 6az7 + 4az9 + a2z2 - a2z4 - 7a2z6 + 7a2z8 - a3z + 5a3z3 - 11a3z5 + 7a3z7 + 2a4z2 - 6a4z4 + 4a4z6 - a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {-2, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1187. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          2 
j = 9         51 
j = 7        72  
j = 5       95   
j = 3      107    
j = 1     109     
j = -1    811      
j = -3   59       
j = -5  38        
j = -7 15         
j = -9 3          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 87]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 87]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[16, 8, 17, 7], 
 
>   X[18, 10, 19, 9], X[2, 11, 3, 12], X[20, 13, 21, 14], X[8, 16, 9, 15], 
 
>   X[6, 18, 7, 17], X[22, 19, 1, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 87]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -9, 4, -8, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, 
 
>   -7, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 87]]
Out[5]=   
DTCode[4, 10, 12, 16, 18, 2, 20, 8, 6, 22, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 87]][t]
Out[6]=   
     2    11   28              2      3
39 - -- + -- - -- - 28 t + 11 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 87]][z]
Out[7]=   
       2    4      6
1 - 2 z  - z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 87]}
In[9]:=
{KnotDet[Knot[11, Alternating, 87]], KnotSignature[Knot[11, Alternating, 87]]}
Out[9]=   
{121, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 87]][q]
Out[10]=   
      -5   4    8    13   17              2       3      4      5    6
20 - q   + -- - -- + -- - -- - 19 q + 16 q  - 12 q  + 7 q  - 3 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 28], Knot[11, Alternating, 87], 
 
>   Knot[11, Alternating, 96]}
In[12]:=
A2Invariant[Knot[11, Alternating, 87]][q]
Out[12]=   
      -16    -14    2     3    2    2    5       2      4      6      8
-1 - q    + q    + --- - --- + -- - -- + -- + 3 q  - 2 q  - 3 q  + 2 q  - 
                    12    10    8    4    2
                   q     q     q    q    q
 
       10      12      14    16    18
>   4 q   + 2 q   + 2 q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 87]][a, z]
Out[13]=   
                      2      2                           4      4
    2    4     2   2 z    6 z       2  2    4  2    4   z    3 z       2  4
3 + -- - -- + z  + ---- - ---- + 2 a  z  - a  z  - z  + -- - ---- + 2 a  z  - 
     4    2          4      2                            4     2
    a    a          a      a                            a     a
 
          6
     6   z
>   z  - --
          2
         a
In[14]:=
Kauffman[Knot[11, Alternating, 87]][a, z]
Out[14]=   
                                                          2      2       2
    2    4    2 z   3 z   3 z            3         2   2 z    7 z    21 z
3 + -- + -- - --- - --- - --- - 3 a z - a  z - 13 z  + ---- - ---- - ----- + 
     4    2    5     3     a                             6      4      2
    a    a    a     a                                   a      a      a
 
                         3      3       3
     2  2      4  2   6 z    8 z    12 z          3      3  3    5  3       4
>   a  z  + 2 a  z  + ---- + ---- + ----- + 16 a z  + 5 a  z  - a  z  + 31 z  - 
                        5      3      a
                       a      a
 
       4       4       4                        5      5      5
    3 z    12 z    41 z     2  4      4  4   8 z    6 z    8 z          5
>   ---- + ----- + ----- - a  z  - 6 a  z  - ---- - ---- - ---- - 22 a z  - 
      6      4       2                         5      3     a
     a      a       a                         a      a
 
                                6       6       6                          7
        3  5    5  5       6   z    13 z    37 z       2  6      4  6   3 z
>   11 a  z  + a  z  - 34 z  + -- - ----- - ----- - 7 a  z  + 4 a  z  + ---- - 
                                6     4       2                           5
                               a     a       a                           a
 
       7      7                                 8       8                9
    4 z    8 z         7      3  7       8   5 z    12 z       2  8   4 z
>   ---- - ---- + 6 a z  + 7 a  z  + 14 z  + ---- + ----- + 7 a  z  + ---- + 
      3     a                                  4      2                 3
     a                                        a      a                 a
 
       9                   10
    8 z         9    10   z
>   ---- + 4 a z  + z   + ---
     a                     2
                          a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 87]], Vassiliev[3][Knot[11, Alternating, 87]]}
Out[15]=   
{-2, -2}
In[16]:=
Kh[Knot[11, Alternating, 87]][q, t]
Out[16]=   
11            1        3       1       5       3       8       5      9
-- + 10 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     8                3        3  2      5  2      5  3      7  3      7  4
>   --- + 9 q t + 10 q  t + 7 q  t  + 9 q  t  + 5 q  t  + 7 q  t  + 2 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   5 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a87
K11a86
K11a86
K11a88
K11a88