© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a85
K11a85
K11a87
K11a87
K11a86
Knotscape
This page is passe. Go here instead!

   The Knot K11a86

Visit K11a86's page at Knotilus!

Acknowledgement

K11a86 as Morse Link
DrawMorseLink

PD Presentation: X4251 X10,3,11,4 X12,6,13,5 X16,8,17,7 X18,10,19,9 X2,11,3,12 X20,13,21,14 X6,16,7,15 X8,18,9,17 X22,19,1,20 X14,21,15,22

Gauss Code: {1, -6, 2, -1, 3, -8, 4, -9, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, -7, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 10 12 16 18 2 20 6 8 22 14

Alexander Polynomial: - t-4 + 5t-3 - 12t-2 + 18t-1 - 19 + 18t - 12t2 + 5t3 - t4

Conway Polynomial: 1 - z2 - 2z4 - 3z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {91, 2}

Jones Polynomial: - q-4 + 3q-3 - 5q-2 + 9q-1 - 12 + 14q - 14q2 + 13q3 - 10q4 + 6q5 - 3q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11a205, ...}

A2 (sl(3)) Invariant: - q-12 + q-8 + 3q-4 - q-2 + 1 + q2 - 2q4 + 3q6 - 3q8 + q10 - q12 - q14 + 2q16 - q18 + q20

HOMFLY-PT Polynomial: 2a-4 + 5a-4z2 + 4a-4z4 + a-4z6 - 5a-2 - 15a-2z2 - 14a-2z4 - 6a-2z6 - a-2z8 + 5 + 12z2 + 9z4 + 2z6 - a2 - 3a2z2 - a2z4

Kauffman Polynomial: - a-8z2 + a-8z4 + a-7z - 3a-7z3 + 3a-7z5 + 2a-6z2 - 5a-6z4 + 5a-6z6 + a-5z + a-5z3 - 6a-5z5 + 6a-5z7 + 2a-4 - 5a-4z2 + 7a-4z4 - 9a-4z6 + 6a-4z8 + a-3z3 - 2a-3z5 - 4a-3z7 + 4a-3z9 + 5a-2 - 26a-2z2 + 45a-2z4 - 36a-2z6 + 9a-2z8 + a-2z10 - a-1z - 2a-1z3 + 14a-1z5 - 20a-1z7 + 7a-1z9 + 5 - 26z2 + 49z4 - 35z6 + 6z8 + z10 - 2az + 5az3 + 3az5 - 9az7 + 3az9 + a2 - 8a2z2 + 17a2z4 - 13a2z6 + 3a2z8 - a3z + 4a3z3 - 4a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {-1, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1186. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          2 
j = 11         41 
j = 9        62  
j = 7       74   
j = 5      76    
j = 3     77     
j = 1    68      
j = -1   36       
j = -3  26        
j = -5 13         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 86]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 86]]
Out[3]=   
PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[16, 8, 17, 7], 
 
>   X[18, 10, 19, 9], X[2, 11, 3, 12], X[20, 13, 21, 14], X[6, 16, 7, 15], 
 
>   X[8, 18, 9, 17], X[22, 19, 1, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 86]]
Out[4]=   
GaussCode[1, -6, 2, -1, 3, -8, 4, -9, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, 
 
>   -7, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 86]]
Out[5]=   
DTCode[4, 10, 12, 16, 18, 2, 20, 6, 8, 22, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 86]][t]
Out[6]=   
       -4   5    12   18              2      3    4
-19 - t   + -- - -- + -- + 18 t - 12 t  + 5 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 86]][z]
Out[7]=   
     2      4      6    8
1 - z  - 2 z  - 3 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 86]}
In[9]:=
{KnotDet[Knot[11, Alternating, 86]], KnotSignature[Knot[11, Alternating, 86]]}
Out[9]=   
{91, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 86]][q]
Out[10]=   
       -4   3    5    9              2       3       4      5      6    7
-12 - q   + -- - -- + - + 14 q - 14 q  + 13 q  - 10 q  + 6 q  - 3 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 86], Knot[11, Alternating, 205]}
In[12]:=
A2Invariant[Knot[11, Alternating, 86]][q]
Out[12]=   
     -12    -8   3     -2    2      4      6      8    10    12    14      16
1 - q    + q   + -- - q   + q  - 2 q  + 3 q  - 3 q  + q   - q   - q   + 2 q   - 
                  4
                 q
 
     18    20
>   q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 86]][a, z]
Out[13]=   
                              2       2                       4       4
    2    5     2       2   5 z    15 z       2  2      4   4 z    14 z
5 + -- - -- - a  + 12 z  + ---- - ----- - 3 a  z  + 9 z  + ---- - ----- - 
     4    2                  4      2                        4      2
    a    a                  a      a                        a      a
 
                    6      6    8
     2  4      6   z    6 z    z
>   a  z  + 2 z  + -- - ---- - --
                    4     2     2
                   a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 86]][a, z]
Out[14]=   
                                                         2      2      2
    2    5     2   z    z    z            3         2   z    2 z    5 z
5 + -- + -- + a  + -- + -- - - - 2 a z - a  z - 26 z  - -- + ---- - ---- - 
     4    2         7    5   a                           8     6      4
    a    a         a    a                               a     a      a
 
        2                3    3    3      3                               4
    26 z       2  2   3 z    z    z    2 z         3      3  3       4   z
>   ----- - 8 a  z  - ---- + -- + -- - ---- + 5 a z  + 4 a  z  + 49 z  + -- - 
      2                 7     5    3    a                                 8
     a                 a     a    a                                      a
 
       4      4       4                 5      5      5       5
    5 z    7 z    45 z        2  4   3 z    6 z    2 z    14 z         5
>   ---- + ---- + ----- + 17 a  z  + ---- - ---- - ---- + ----- + 3 a z  - 
      6      4      2                  7      5      3      a
     a      a      a                  a      a      a
 
                         6      6       6                 7      7       7
       3  5       6   5 z    9 z    36 z        2  6   6 z    4 z    20 z
>   4 a  z  - 35 z  + ---- - ---- - ----- - 13 a  z  + ---- - ---- - ----- - 
                        6      4      2                  5      3      a
                       a      a      a                  a      a
 
                               8      8                9      9
         7    3  7      8   6 z    9 z       2  8   4 z    7 z         9
>   9 a z  + a  z  + 6 z  + ---- + ---- + 3 a  z  + ---- + ---- + 3 a z  + 
                              4      2                3     a
                             a      a                a
 
           10
     10   z
>   z   + ---
           2
          a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 86]], Vassiliev[3][Knot[11, Alternating, 86]]}
Out[15]=   
{-1, -2}
In[16]:=
Kh[Knot[11, Alternating, 86]][q, t]
Out[16]=   
         3     1       2       1       3       2       6      3      6    6 q
8 q + 7 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              9  5    7  4    5  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q  t    q  t    q t
 
       3        5        5  2      7  2      7  3      9  3      9  4
>   7 q  t + 7 q  t + 6 q  t  + 7 q  t  + 4 q  t  + 6 q  t  + 2 q  t  + 
 
       11  4    11  5      13  5    15  6
>   4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a86
K11a85
K11a85
K11a87
K11a87