© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a67
K11a67
K11a69
K11a69
K11a68
Knotscape
This page is passe. Go here instead!

   The Knot K11a68

Visit K11a68's page at Knotilus!

Acknowledgement

K11a68 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X16,5,17,6 X14,8,15,7 X2,9,3,10 X18,12,19,11 X20,14,21,13 X22,15,1,16 X10,18,11,17 X12,20,13,19 X6,21,7,22

Gauss Code: {1, -5, 2, -1, 3, -11, 4, -2, 5, -9, 6, -10, 7, -4, 8, -3, 9, -6, 10, -7, 11, -8}

DT (Dowker-Thistlethwaite) Code: 4 8 16 14 2 18 20 22 10 12 6

Alexander Polynomial: - t-4 + 6t-3 - 14t-2 + 20t-1 - 21 + 20t - 14t2 + 6t3 - t4

Conway Polynomial: 1 + 2z2 + 2z4 - 2z6 - z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {103, 2}

Jones Polynomial: - q-4 + 3q-3 - 6q-2 + 10q-1 - 13 + 16q - 16q2 + 15q3 - 11q4 + 7q5 - 4q6 + q7

Other knots (up to mirrors) with the same Jones Polynomial: {K11a111, ...}

A2 (sl(3)) Invariant: - q-12 + q-8 - q-6 + 2q-4 - 2q-2 + 1 + 2q2 - q4 + 5q6 - 2q8 + 2q10 - q12 - 2q14 + q16 - 2q18 + q20

HOMFLY-PT Polynomial: - a-4 + a-4z2 + 3a-4z4 + a-4z6 + a-2 - 4a-2z2 - 8a-2z4 - 5a-2z6 - a-2z8 + 2 + 8z2 + 8z4 + 2z6 - a2 - 3a2z2 - a2z4

Kauffman Polynomial: a-8z4 - 3a-7z3 + 4a-7z5 + a-6z2 - 7a-6z4 + 7a-6z6 + 2a-5z - 3a-5z3 - 7a-5z5 + 8a-5z7 - a-4 + 2a-4z2 + 2a-4z4 - 11a-4z6 + 8a-4z8 + 3a-3z - 4a-3z3 + 5a-3z5 - 10a-3z7 + 6a-3z9 - a-2 - 7a-2z2 + 30a-2z4 - 30a-2z6 + 6a-2z8 + 2a-2z10 + a-1z - 10a-1z3 + 32a-1z5 - 33a-1z7 + 10a-1z9 + 2 - 15z2 + 34z4 - 24z6 + z8 + 2z10 - az - 2az3 + 12az5 - 14az7 + 4az9 + a2 - 7a2z2 + 14a2z4 - 12a2z6 + 3a2z8 - a3z + 4a3z3 - 4a3z5 + a3z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, 1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=2 is the signature of 1168. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          3 
j = 11         41 
j = 9        73  
j = 7       84   
j = 5      87    
j = 3     88     
j = 1    69      
j = -1   47       
j = -3  26        
j = -5 14         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 68]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 68]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[16, 5, 17, 6], X[14, 8, 15, 7], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], X[22, 15, 1, 16], 
 
>   X[10, 18, 11, 17], X[12, 20, 13, 19], X[6, 21, 7, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 68]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -11, 4, -2, 5, -9, 6, -10, 7, -4, 8, -3, 9, -6, 10, 
 
>   -7, 11, -8]
In[5]:=
DTCode[Knot[11, Alternating, 68]]
Out[5]=   
DTCode[4, 8, 16, 14, 2, 18, 20, 22, 10, 12, 6]
In[6]:=
alex = Alexander[Knot[11, Alternating, 68]][t]
Out[6]=   
       -4   6    14   20              2      3    4
-21 - t   + -- - -- + -- + 20 t - 14 t  + 6 t  - t
             3    2   t
            t    t
In[7]:=
Conway[Knot[11, Alternating, 68]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  + 2 z  - 2 z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 68]}
In[9]:=
{KnotDet[Knot[11, Alternating, 68]], KnotSignature[Knot[11, Alternating, 68]]}
Out[9]=   
{103, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 68]][q]
Out[10]=   
       -4   3    6    10              2       3       4      5      6    7
-13 - q   + -- - -- + -- + 16 q - 16 q  + 15 q  - 11 q  + 7 q  - 4 q  + q
             3    2   q
            q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 68], Knot[11, Alternating, 111]}
In[12]:=
A2Invariant[Knot[11, Alternating, 68]][q]
Out[12]=   
     -12    -8    -6   2    2       2    4      6      8      10    12
1 - q    + q   - q   + -- - -- + 2 q  - q  + 5 q  - 2 q  + 2 q   - q   - 
                        4    2
                       q    q
 
       14    16      18    20
>   2 q   + q   - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 68]][a, z]
Out[13]=   
                             2      2                       4      4
     -4    -2    2      2   z    4 z       2  2      4   3 z    8 z     2  4
2 - a   + a   - a  + 8 z  + -- - ---- - 3 a  z  + 8 z  + ---- - ---- - a  z  + 
                             4     2                       4      2
                            a     a                       a      a
 
            6      6    8
       6   z    5 z    z
>   2 z  + -- - ---- - --
            4     2     2
           a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 68]][a, z]
Out[14]=   
                                                           2      2      2
     -4    -2    2   2 z   3 z   z          3         2   z    2 z    7 z
2 - a   - a   + a  + --- + --- + - - a z - a  z - 15 z  + -- + ---- - ---- - 
                      5     3    a                         6     4      2
                     a     a                              a     a      a
 
                 3      3      3       3                               4
       2  2   3 z    3 z    4 z    10 z         3      3  3       4   z
>   7 a  z  - ---- - ---- - ---- - ----- - 2 a z  + 4 a  z  + 34 z  + -- - 
                7      5      3      a                                 8
               a      a      a                                        a
 
       4      4       4                 5      5      5       5
    7 z    2 z    30 z        2  4   4 z    7 z    5 z    32 z          5
>   ---- + ---- + ----- + 14 a  z  + ---- - ---- + ---- + ----- + 12 a z  - 
      6      4      2                  7      5      3      a
     a      a      a                  a      a      a
 
                         6       6       6                 7       7       7
       3  5       6   7 z    11 z    30 z        2  6   8 z    10 z    33 z
>   4 a  z  - 24 z  + ---- - ----- - ----- - 12 a  z  + ---- - ----- - ----- - 
                        6      4       2                  5      3       a
                       a      a       a                  a      a
 
                              8      8                9       9
          7    3  7    8   8 z    6 z       2  8   6 z    10 z         9
>   14 a z  + a  z  + z  + ---- + ---- + 3 a  z  + ---- + ----- + 4 a z  + 
                             4      2                3      a
                            a      a                a
 
               10
       10   2 z
>   2 z   + -----
              2
             a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 68]], Vassiliev[3][Knot[11, Alternating, 68]]}
Out[15]=   
{2, 1}
In[16]:=
Kh[Knot[11, Alternating, 68]][q, t]
Out[16]=   
         3     1       2       1       4       2       6      4      7    6 q
9 q + 8 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + --- + 
              9  5    7  4    5  4    5  3    3  3    3  2      2   q t    t
             q  t    q  t    q  t    q  t    q  t    q  t    q t
 
       3        5        5  2      7  2      7  3      9  3      9  4
>   8 q  t + 8 q  t + 7 q  t  + 8 q  t  + 4 q  t  + 7 q  t  + 3 q  t  + 
 
       11  4    11  5      13  5    15  6
>   4 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a68
K11a67
K11a67
K11a69
K11a69