© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a66
K11a66
K11a68
K11a68
K11a67
Knotscape
This page is passe. Go here instead!

   The Knot K11a67

Visit K11a67's page at Knotilus!

Acknowledgement

K11a67 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8394 X16,5,17,6 X12,8,13,7 X2,9,3,10 X18,12,19,11 X22,13,1,14 X20,15,21,16 X10,18,11,17 X6,19,7,20 X14,21,15,22

Gauss Code: {1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -4, 7, -11, 8, -3, 9, -6, 10, -8, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 8 16 12 2 18 22 20 10 6 14

Alexander Polynomial: - 2t-3 + 12t-2 - 29t-1 + 39 - 29t + 12t2 - 2t3

Conway Polynomial: 1 + z2 - 2z6

Other knots with the same Alexander/Conway Polynomial: {K11a104, K11a168, ...}

Determinant and Signature: {125, 0}

Jones Polynomial: - q-7 + 3q-6 - 7q-5 + 12q-4 - 16q-3 + 20q-2 - 20q-1 + 18 - 14q + 9q2 - 4q3 + q4

Other knots (up to mirrors) with the same Jones Polynomial: {K11a317, ...}

A2 (sl(3)) Invariant: - q-22 + q-18 - 3q-16 + 2q-14 + q-12 - 2q-10 + 5q-8 - q-6 + 2q-4 - 3 + 3q2 - 4q4 + 2q6 + 2q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2 + a-2z2 + a-2z4 - 2 - 3z2 - 2z4 - z6 + 2a2 + a2z2 - a2z4 - a2z6 + a4 + 3a4z2 + 2a4z4 - a6 - a6z2

Kauffman Polynomial: a-4z4 - a-3z3 + 4a-3z5 - a-2 + 3a-2z2 - 8a-2z4 + 9a-2z6 - 2a-1z + 9a-1z3 - 18a-1z5 + 13a-1z7 - 2 + 6z2 - z4 - 15z6 + 12z8 - 4az + 18az3 - 24az5 + 7az9 - 2a2 + 24a2z4 - 40a2z6 + 13a2z8 + 2a2z10 - 3a3z + 8a3z3 + 7a3z5 - 25a3z7 + 11a3z9 + a4 - 9a4z2 + 29a4z4 - 27a4z6 + 4a4z8 + 2a4z10 - 3a5z + 5a5z3 + 5a5z5 - 11a5z7 + 4a5z9 + a6 - 6a6z2 + 13a6z4 - 11a6z6 + 3a6z8 - 2a7z + 5a7z3 - 4a7z5 + a7z7

V2 and V3, the type 2 and 3 Vassiliev invariants: {1, -3}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1167. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         61 
j = 3        83  
j = 1       106   
j = -1      119    
j = -3     99     
j = -5    711      
j = -7   59       
j = -9  27        
j = -11 15         
j = -13 2          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 67]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 67]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[16, 5, 17, 6], X[12, 8, 13, 7], 
 
>   X[2, 9, 3, 10], X[18, 12, 19, 11], X[22, 13, 1, 14], X[20, 15, 21, 16], 
 
>   X[10, 18, 11, 17], X[6, 19, 7, 20], X[14, 21, 15, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 67]]
Out[4]=   
GaussCode[1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -4, 7, -11, 8, -3, 9, -6, 10, 
 
>   -8, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 67]]
Out[5]=   
DTCode[4, 8, 16, 12, 2, 18, 22, 20, 10, 6, 14]
In[6]:=
alex = Alexander[Knot[11, Alternating, 67]][t]
Out[6]=   
     2    12   29              2      3
39 - -- + -- - -- - 29 t + 12 t  - 2 t
      3    2   t
     t    t
In[7]:=
Conway[Knot[11, Alternating, 67]][z]
Out[7]=   
     2      6
1 + z  - 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 67], Knot[11, Alternating, 104], 
 
>   Knot[11, Alternating, 168]}
In[9]:=
{KnotDet[Knot[11, Alternating, 67]], KnotSignature[Knot[11, Alternating, 67]]}
Out[9]=   
{125, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 67]][q]
Out[10]=   
      -7   3    7    12   16   20   20             2      3    4
18 - q   + -- - -- + -- - -- + -- - -- - 14 q + 9 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 67], Knot[11, Alternating, 317]}
In[12]:=
A2Invariant[Knot[11, Alternating, 67]][q]
Out[12]=   
      -22    -18    3     2     -12    2    5     -6   2       2      4
-3 - q    + q    - --- + --- + q    - --- + -- - q   + -- + 3 q  - 4 q  + 
                    16    14           10    8          4
                   q     q            q     q          q
 
       6      8      10    12
>   2 q  + 2 q  - 2 q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 67]][a, z]
Out[13]=   
                                    2                                     4
      -2      2    4    6      2   z     2  2      4  2    6  2      4   z
-2 + a   + 2 a  + a  - a  - 3 z  + -- + a  z  + 3 a  z  - a  z  - 2 z  + -- - 
                                    2                                     2
                                   a                                     a
 
     2  4      4  4    6    2  6
>   a  z  + 2 a  z  - z  - a  z
In[14]:=
Kauffman[Knot[11, Alternating, 67]][a, z]
Out[14]=   
      -2      2    4    6   2 z              3        5        7        2
-2 - a   - 2 a  + a  + a  - --- - 4 a z - 3 a  z - 3 a  z - 2 a  z + 6 z  + 
                             a
 
       2                        3      3
    3 z       4  2      6  2   z    9 z          3      3  3      5  3
>   ---- - 9 a  z  - 6 a  z  - -- + ---- + 18 a z  + 8 a  z  + 5 a  z  + 
      2                         3    a
     a                         a
 
                    4      4                                       5       5
       7  3    4   z    8 z        2  4       4  4       6  4   4 z    18 z
>   5 a  z  - z  + -- - ---- + 24 a  z  + 29 a  z  + 13 a  z  + ---- - ----- - 
                    4     2                                       3      a
                   a     a                                       a
 
                                                       6
          5      3  5      5  5      7  5       6   9 z        2  6
>   24 a z  + 7 a  z  + 5 a  z  - 4 a  z  - 15 z  + ---- - 40 a  z  - 
                                                      2
                                                     a
 
                              7
        4  6       6  6   13 z        3  7       5  7    7  7       8
>   27 a  z  - 11 a  z  + ----- - 25 a  z  - 11 a  z  + a  z  + 12 z  + 
                            a
 
        2  8      4  8      6  8        9       3  9      5  9      2  10
>   13 a  z  + 4 a  z  + 3 a  z  + 7 a z  + 11 a  z  + 4 a  z  + 2 a  z   + 
 
       4  10
>   2 a  z
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 67]], Vassiliev[3][Knot[11, Alternating, 67]]}
Out[15]=   
{1, -3}
In[16]:=
Kh[Knot[11, Alternating, 67]][q, t]
Out[16]=   
9            1        2        1        5        2       7       5       9
- + 10 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q           15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
           q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      7      11       9      9     11               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 6 q t + 8 q  t + 3 q  t  + 6 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a67
K11a66
K11a66
K11a68
K11a68