© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a43
K11a43
K11a45
K11a45
K11a44
Knotscape
This page is passe. Go here instead!

   The Knot K11a44

Visit K11a44's page at Knotilus!

Acknowledgement

K11a44 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X14,5,15,6 X2837 X20,10,21,9 X16,11,17,12 X18,13,19,14 X6,15,7,16 X12,17,13,18 X22,20,1,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -7, 10, -5, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 20 16 18 6 12 22 10

Alexander Polynomial: t-4 - 5t-3 + 14t-2 - 24t-1 + 29 - 24t + 14t2 - 5t3 + t4

Conway Polynomial: 1 + 3z2 + 4z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a47, K11a109, ...}

Determinant and Signature: {117, 0}

Jones Polynomial: - q-5 + 3q-4 - 8q-3 + 13q-2 - 16q-1 + 20 - 18q + 16q2 - 12q3 + 6q4 - 3q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a47, ...}

A2 (sl(3)) Invariant: - q-14 + q-12 - 4q-10 - q-4 + 8q-2 + 1 + 6q2 - q4 - 3q6 - 5q10 + q12 + q18

HOMFLY-PT Polynomial: 2a-4 + 3a-4z2 + a-4z4 - 9a-2 - 15a-2z2 - 9a-2z4 - 2a-2z6 + 13 + 22z2 + 16z4 + 6z6 + z8 - 5a2 - 7a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: 2a-6z2 - 3a-6z4 + a-6z6 - 4a-5z + 9a-5z3 - 9a-5z5 + 3a-5z7 + 2a-4 - a-4z2 + 3a-4z4 - 8a-4z6 + 4a-4z8 - 15a-3z + 30a-3z3 - 22a-3z5 + 2a-3z7 + 3a-3z9 + 9a-2 - 19a-2z2 + 28a-2z4 - 28a-2z6 + 10a-2z8 + a-2z10 - 21a-1z + 42a-1z3 - 27a-1z5 - 2a-1z7 + 7a-1z9 + 13 - 28z2 + 37z4 - 33z6 + 13z8 + z10 - 15az + 31az3 - 25az5 + 5az7 + 4az9 + 5a2 - 11a2z2 + 11a2z4 - 11a2z6 + 7a2z8 - 4a3z + 8a3z3 - 10a3z5 + 6a3z7 + a4z2 - 4a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {3, -2}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1144. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          2 
j = 9         41 
j = 7        82  
j = 5       84   
j = 3      108    
j = 1     108     
j = -1    711      
j = -3   69       
j = -5  27        
j = -7 16         
j = -9 2          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 44]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 44]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[16, 11, 17, 12], X[18, 13, 19, 14], X[6, 15, 7, 16], 
 
>   X[12, 17, 13, 18], X[22, 20, 1, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 44]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -7, 10, 
 
>   -5, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 44]]
Out[5]=   
DTCode[4, 8, 14, 2, 20, 16, 18, 6, 12, 22, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 44]][t]
Out[6]=   
      -4   5    14   24              2      3    4
29 + t   - -- + -- - -- - 24 t + 14 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 44]][z]
Out[7]=   
       2      4      6    8
1 + 3 z  + 4 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 44], Knot[11, Alternating, 47], 
 
>   Knot[11, Alternating, 109]}
In[9]:=
{KnotDet[Knot[11, Alternating, 44]], KnotSignature[Knot[11, Alternating, 44]]}
Out[9]=   
{117, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 44]][q]
Out[10]=   
      -5   3    8    13   16              2       3      4      5    6
20 - q   + -- - -- + -- - -- - 18 q + 16 q  - 12 q  + 6 q  - 3 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 44], Knot[11, Alternating, 47]}
In[12]:=
A2Invariant[Knot[11, Alternating, 44]][q]
Out[12]=   
     -14    -12    4     -4   8       2    4      6      10    12    18
1 - q    + q    - --- - q   + -- + 6 q  - q  - 3 q  - 5 q   + q   + q
                   10          2
                  q           q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 44]][a, z]
Out[13]=   
                                 2       2                      4      4
     2    9       2       2   3 z    15 z       2  2       4   z    9 z
13 + -- - -- - 5 a  + 22 z  + ---- - ----- - 7 a  z  + 16 z  + -- - ---- - 
      4    2                    4      2                        4     2
     a    a                    a      a                        a     a
 
                        6
       2  4      6   2 z     2  6    8
>   4 a  z  + 6 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 44]][a, z]
Out[14]=   
     2    9       2   4 z   15 z   21 z               3      5         2
13 + -- + -- + 5 a  - --- - ---- - ---- - 15 a z - 4 a  z + a  z - 28 z  + 
      4    2           5      3     a
     a    a           a      a
 
       2    2       2                         3       3       3
    2 z    z    19 z        2  2    4  2   9 z    30 z    42 z          3
>   ---- - -- - ----- - 11 a  z  + a  z  + ---- + ----- + ----- + 31 a z  + 
      6     4     2                          5      3       a
     a     a     a                          a      a
 
                                   4      4       4
       3  3      5  3       4   3 z    3 z    28 z        2  4      4  4
>   8 a  z  - 2 a  z  + 37 z  - ---- + ---- + ----- + 11 a  z  - 4 a  z  - 
                                  6      4      2
                                 a      a      a
 
       5       5       5                                         6      6
    9 z    22 z    27 z          5       3  5    5  5       6   z    8 z
>   ---- - ----- - ----- - 25 a z  - 10 a  z  + a  z  - 33 z  + -- - ---- - 
      5      3       a                                           6     4
     a      a                                                   a     a
 
        6                           7      7      7
    28 z        2  6      4  6   3 z    2 z    2 z         7      3  7
>   ----- - 11 a  z  + 3 a  z  + ---- + ---- - ---- + 5 a z  + 6 a  z  + 
      2                            5      3     a
     a                            a      a
 
               8       8                9      9                   10
        8   4 z    10 z       2  8   3 z    7 z         9    10   z
>   13 z  + ---- + ----- + 7 a  z  + ---- + ---- + 4 a z  + z   + ---
              4      2                 3     a                     2
             a      a                 a                           a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 44]], Vassiliev[3][Knot[11, Alternating, 44]]}
Out[15]=   
{3, -2}
In[16]:=
Kh[Knot[11, Alternating, 44]][q, t]
Out[16]=   
11            1        2       1       6       2       7       6      9
-- + 10 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     7                3        3  2      5  2      5  3      7  3      7  4
>   --- + 8 q t + 10 q  t + 8 q  t  + 8 q  t  + 4 q  t  + 8 q  t  + 2 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   4 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a44
K11a43
K11a43
K11a45
K11a45