© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a42
K11a42
K11a44
K11a44
K11a43
Knotscape
This page is passe. Go here instead!

   The Knot K11a43

Visit K11a43's page at Knotilus!

Acknowledgement

K11a43 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X14,6,15,5 X2837 X20,10,21,9 X16,12,17,11 X6,14,7,13 X18,16,19,15 X12,18,13,17 X22,20,1,19 X10,22,11,21

Gauss Code: {1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -8, 10, -5, 11, -10}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 20 16 6 18 12 22 10

Alexander Polynomial: 4t-3 - 15t-2 + 30t-1 - 37 + 30t - 15t2 + 4t3

Conway Polynomial: 1 + 6z2 + 9z4 + 4z6

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {135, 6}

Jones Polynomial: q3 - 3q4 + 9q5 - 13q6 + 19q7 - 22q8 + 21q9 - 20q10 + 14q11 - 8q12 + 4q13 - q14

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q10 - 2q12 + 4q14 - q16 + 2q18 + 6q20 - 2q22 + 5q24 - 4q26 - 3q28 - 3q30 - 6q32 + 3q34 + 2q38 + 3q40 - q42 - q44

HOMFLY-PT Polynomial: - a-14 + 6a-12 + 4a-12z2 - 12a-10 - 17a-10z2 - 6a-10z4 + 7a-8 + 16a-8z2 + 12a-8z4 + 3a-8z6 + a-6 + 3a-6z2 + 3a-6z4 + a-6z6

Kauffman Polynomial: - a-17z3 + a-17z5 + 3a-16z2 - 6a-16z4 + 4a-16z6 - 3a-15z + 7a-15z3 - 10a-15z5 + 7a-15z7 + a-14 + 8a-14z2 - 11a-14z4 - 2a-14z6 + 7a-14z8 - 15a-13z + 39a-13z3 - 41a-13z5 + 13a-13z7 + 4a-13z9 + 6a-12 - 3a-12z2 + 12a-12z4 - 31a-12z6 + 17a-12z8 + a-12z10 - 27a-11z + 63a-11z3 - 54a-11z5 + 7a-11z7 + 8a-11z9 + 12a-10 - 27a-10z2 + 38a-10z4 - 41a-10z6 + 16a-10z8 + a-10z10 - 15a-9z + 35a-9z3 - 30a-9z5 + 4a-9z7 + 4a-9z9 + 7a-8 - 16a-8z2 + 18a-8z4 - 15a-8z6 + 6a-8z8 + 3a-7z3 - 6a-7z5 + 3a-7z7 - a-6 + 3a-6z2 - 3a-6z4 + a-6z6

V2 and V3, the type 2 and 3 Vassiliev invariants: {6, 12}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=6 is the signature of 1143. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 29           1
j = 27          3 
j = 25         51 
j = 23        93  
j = 21       115   
j = 19      109    
j = 17     1211     
j = 15    710      
j = 13   612       
j = 11  37        
j = 9  6         
j = 713          
j = 51           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 43]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 43]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[2, 8, 3, 7], 
 
>   X[20, 10, 21, 9], X[16, 12, 17, 11], X[6, 14, 7, 13], X[18, 16, 19, 15], 
 
>   X[12, 18, 13, 17], X[22, 20, 1, 19], X[10, 22, 11, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 43]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -7, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -8, 10, 
 
>   -5, 11, -10]
In[5]:=
DTCode[Knot[11, Alternating, 43]]
Out[5]=   
DTCode[4, 8, 14, 2, 20, 16, 6, 18, 12, 22, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 43]][t]
Out[6]=   
      4    15   30              2      3
-37 + -- - -- + -- + 30 t - 15 t  + 4 t
       3    2   t
      t    t
In[7]:=
Conway[Knot[11, Alternating, 43]][z]
Out[7]=   
       2      4      6
1 + 6 z  + 9 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 43]}
In[9]:=
{KnotDet[Knot[11, Alternating, 43]], KnotSignature[Knot[11, Alternating, 43]]}
Out[9]=   
{135, 6}
In[10]:=
J=Jones[Knot[11, Alternating, 43]][q]
Out[10]=   
 3      4      5       6       7       8       9       10       11      12
q  - 3 q  + 9 q  - 13 q  + 19 q  - 22 q  + 21 q  - 20 q   + 14 q   - 8 q   + 
 
       13    14
>   4 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 43]}
In[12]:=
A2Invariant[Knot[11, Alternating, 43]][q]
Out[12]=   
 10      12      14    16      18      20      22      24      26      28
q   - 2 q   + 4 q   - q   + 2 q   + 6 q   - 2 q   + 5 q   - 4 q   - 3 q   - 
 
       30      32      34      38      40    42    44
>   3 q   - 6 q   + 3 q   + 2 q   + 3 q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 43]][a, z]
Out[13]=   
                                  2       2       2      2      4       4
  -14    6    12    7     -6   4 z    17 z    16 z    3 z    6 z    12 z
-a    + --- - --- + -- + a   + ---- - ----- + ----- + ---- - ---- + ----- + 
         12    10    8          12      10      8       6     10      8
        a     a     a          a       a       a       a     a       a
 
       4      6    6
    3 z    3 z    z
>   ---- + ---- + --
      6      8     6
     a      a     a
In[14]:=
Kauffman[Knot[11, Alternating, 43]][a, z]
Out[14]=   
                                                            2      2      2
 -14    6    12    7     -6   3 z   15 z   27 z   15 z   3 z    8 z    3 z
a    + --- + --- + -- - a   - --- - ---- - ---- - ---- + ---- + ---- - ---- - 
        12    10    8          15    13     11      9     16     14     12
       a     a     a          a     a      a       a     a      a      a
 
        2       2      2    3       3       3       3       3      3      4
    27 z    16 z    3 z    z     7 z    39 z    63 z    35 z    3 z    6 z
>   ----- - ----- + ---- - --- + ---- + ----- + ----- + ----- + ---- - ---- - 
      10      8       6     17    15      13      11      9       7     16
     a       a       a     a     a       a       a       a       a     a
 
        4       4       4       4      4    5        5       5       5
    11 z    12 z    38 z    18 z    3 z    z     10 z    41 z    54 z
>   ----- + ----- + ----- + ----- - ---- + --- - ----- - ----- - ----- - 
      14      12      10      8       6     17     15      13      11
     a       a       a       a       a     a      a       a       a
 
        5      5      6      6       6       6       6    6      7       7
    30 z    6 z    4 z    2 z    31 z    41 z    15 z    z    7 z    13 z
>   ----- - ---- + ---- - ---- - ----- - ----- - ----- + -- + ---- + ----- + 
      9       7     16     14      12      10      8      6    15      13
     a       a     a      a       a       a       a      a    a       a
 
       7      7      7      8       8       8      8      9      9      9
    7 z    4 z    3 z    7 z    17 z    16 z    6 z    4 z    8 z    4 z
>   ---- + ---- + ---- + ---- + ----- + ----- + ---- + ---- + ---- + ---- + 
     11      9      7     14      12      10      8     13     11      9
    a       a      a     a       a       a       a     a      a       a
 
     10    10
    z     z
>   --- + ---
     12    10
    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 43]], Vassiliev[3][Knot[11, Alternating, 43]]}
Out[15]=   
{6, 12}
In[16]:=
Kh[Knot[11, Alternating, 43]][q, t]
Out[16]=   
 5    7      7        9  2      11  2      11  3      13  3       13  4
q  + q  + 3 q  t + 6 q  t  + 3 q   t  + 7 q   t  + 6 q   t  + 12 q   t  + 
 
       15  4       15  5       17  5       17  6       19  6      19  7
>   7 q   t  + 10 q   t  + 12 q   t  + 11 q   t  + 10 q   t  + 9 q   t  + 
 
        21  7      21  8      23  8      23  9      25  9    25  10
>   11 q   t  + 5 q   t  + 9 q   t  + 3 q   t  + 5 q   t  + q   t   + 
 
       27  10    29  11
>   3 q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a43
K11a42
K11a42
K11a44
K11a44