© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a363
K11a363
K11a365
K11a365
K11a364
Knotscape
This page is passe. Go here instead!

   The Knot K11a364

Visit K11a364's page at Knotilus!

Acknowledgement

K11a364 as Morse Link
DrawMorseLink

PD Presentation: X10,2,11,1 X14,4,15,3 X16,6,17,5 X18,8,19,7 X20,10,21,9 X22,12,1,11 X2,14,3,13 X4,16,5,15 X6,18,7,17 X8,20,9,19 X12,22,13,21

Gauss Code: {1, -7, 2, -8, 3, -9, 4, -10, 5, -1, 6, -11, 7, -2, 8, -3, 9, -4, 10, -5, 11, -6}

DT (Dowker-Thistlethwaite) Code: 10 14 16 18 20 22 2 4 6 8 12

Alexander Polynomial: 2t-4 - 3t-3 + 3t-2 - 3t-1 + 3 - 3t + 3t2 - 3t3 + 2t4

Conway Polynomial: 1 + 14z2 + 25z4 + 13z6 + 2z8

Other knots with the same Alexander/Conway Polynomial: {...}

Determinant and Signature: {25, 8}

Jones Polynomial: q4 - q5 + 2q6 - 2q7 + 3q8 - 3q9 + 3q10 - 3q11 + 3q12 - 2q13 + q14 - q15

Other knots (up to mirrors) with the same Jones Polynomial: {...}

A2 (sl(3)) Invariant: q14 + q18 + q22 + q24 + q26 + q28 + q32 - q38 - q40 - q42 - q44

HOMFLY-PT Polynomial: - 4a-12 - 10a-12z2 - 6a-12z4 - a-12z6 + 4a-10 + 14a-10z2 + 16a-10z4 + 7a-10z6 + a-10z8 + a-8 + 10a-8z2 + 15a-8z4 + 7a-8z6 + a-8z8

Kauffman Polynomial: - 2a-19z + a-19z3 - a-18z2 + a-18z4 + a-17z - a-17z3 + a-17z5 + 3a-16z2 - 2a-16z4 + a-16z6 - a-15z + 4a-15z3 - 3a-15z5 + a-15z7 - 4a-14z2 + 6a-14z4 - 4a-14z6 + a-14z8 + a-13z - 8a-13z3 + 9a-13z5 - 5a-13z7 + a-13z9 - 4a-12 + 19a-12z2 - 30a-12z4 + 20a-12z6 - 7a-12z8 + a-12z10 + 5a-11z - 18a-11z3 + 23a-11z5 - 12a-11z7 + 2a-11z9 - 4a-10 + 17a-10z2 - 24a-10z4 + 18a-10z6 - 7a-10z8 + a-10z10 - 4a-9z3 + 10a-9z5 - 6a-9z7 + a-9z9 + a-8 - 10a-8z2 + 15a-8z4 - 7a-8z6 + a-8z8

V2 and V3, the type 2 and 3 Vassiliev invariants: {14, 50}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=8 is the signature of 11364. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9r = 10r = 11
j = 31           1
j = 29            
j = 27         21 
j = 25        1   
j = 23       22   
j = 21      11    
j = 19     22     
j = 17    11      
j = 15   12       
j = 13  11        
j = 11  1         
j = 911          
j = 71           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 364]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 364]]
Out[3]=   
PD[X[10, 2, 11, 1], X[14, 4, 15, 3], X[16, 6, 17, 5], X[18, 8, 19, 7], 
 
>   X[20, 10, 21, 9], X[22, 12, 1, 11], X[2, 14, 3, 13], X[4, 16, 5, 15], 
 
>   X[6, 18, 7, 17], X[8, 20, 9, 19], X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 364]]
Out[4]=   
GaussCode[1, -7, 2, -8, 3, -9, 4, -10, 5, -1, 6, -11, 7, -2, 8, -3, 9, -4, 10, 
 
>   -5, 11, -6]
In[5]:=
DTCode[Knot[11, Alternating, 364]]
Out[5]=   
DTCode[10, 14, 16, 18, 20, 22, 2, 4, 6, 8, 12]
In[6]:=
alex = Alexander[Knot[11, Alternating, 364]][t]
Out[6]=   
    2    3    3    3            2      3      4
3 + -- - -- + -- - - - 3 t + 3 t  - 3 t  + 2 t
     4    3    2   t
    t    t    t
In[7]:=
Conway[Knot[11, Alternating, 364]][z]
Out[7]=   
        2       4       6      8
1 + 14 z  + 25 z  + 13 z  + 2 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 364]}
In[9]:=
{KnotDet[Knot[11, Alternating, 364]], KnotSignature[Knot[11, Alternating, 364]]}
Out[9]=   
{25, 8}
In[10]:=
J=Jones[Knot[11, Alternating, 364]][q]
Out[10]=   
 4    5      6      7      8      9      10      11      12      13    14    15
q  - q  + 2 q  - 2 q  + 3 q  - 3 q  + 3 q   - 3 q   + 3 q   - 2 q   + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 364]}
In[12]:=
A2Invariant[Knot[11, Alternating, 364]][q]
Out[12]=   
 14    18    22    24    26    28    32    38    40    42    44
q   + q   + q   + q   + q   + q   + q   - q   - q   - q   - q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 364]][a, z]
Out[13]=   
                      2       2       2      4       4       4    6       6
-4     4     -8   10 z    14 z    10 z    6 z    16 z    15 z    z     7 z
--- + --- + a   - ----- + ----- + ----- - ---- + ----- + ----- - --- + ---- + 
 12    10           12      10      8      12      10      8      12    10
a     a            a       a       a      a       a       a      a     a
 
       6    8     8
    7 z    z     z
>   ---- + --- + --
      8     10    8
     a     a     a
In[14]:=
Kauffman[Knot[11, Alternating, 364]][a, z]
Out[14]=   
                                                 2       2      2       2
-4     4     -8   2 z    z     z     z    5 z   z     3 z    4 z    19 z
--- - --- + a   - --- + --- - --- + --- + --- - --- + ---- - ---- + ----- + 
 12    10          19    17    15    13    11    18    16     14      12
a     a           a     a     a     a     a     a     a      a       a
 
        2       2    3     3       3      3       3      3    4       4
    17 z    10 z    z     z     4 z    8 z    18 z    4 z    z     2 z
>   ----- - ----- + --- - --- + ---- - ---- - ----- - ---- + --- - ---- + 
      10      8      19    17    15     13      11      9     18    16
     a       a      a     a     a      a       a       a     a     a
 
       4       4       4       4    5       5      5       5       5    6
    6 z    30 z    24 z    15 z    z     3 z    9 z    23 z    10 z    z
>   ---- - ----- - ----- + ----- + --- - ---- + ---- + ----- + ----- + --- - 
     14      12      10      8      17    15     13      11      9      16
    a       a       a       a      a     a      a       a       a      a
 
       6       6       6      6    7       7       7      7    8       8
    4 z    20 z    18 z    7 z    z     5 z    12 z    6 z    z     7 z
>   ---- + ----- + ----- - ---- + --- - ---- - ----- - ---- + --- - ---- - 
     14      12      10      8     15    13      11      9     14    12
    a       a       a       a     a     a       a       a     a     a
 
       8    8    9       9    9    10    10
    7 z    z    z     2 z    z    z     z
>   ---- + -- + --- + ---- + -- + --- + ---
     10     8    13    11     9    12    10
    a      a    a     a      a    a     a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 364]], Vassiliev[3][Knot[11, Alternating, 364]]}
Out[15]=   
{14, 50}
In[16]:=
Kh[Knot[11, Alternating, 364]][q, t]
Out[16]=   
 7    9    9      11  2    13  2    13  3    15  3      15  4    17  4
q  + q  + q  t + q   t  + q   t  + q   t  + q   t  + 2 q   t  + q   t  + 
 
     17  5      19  5      19  6    21  6    21  7      23  7      23  8
>   q   t  + 2 q   t  + 2 q   t  + q   t  + q   t  + 2 q   t  + 2 q   t  + 
 
     25  8      27  9    27  10    31  11
>   q   t  + 2 q   t  + q   t   + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a364
K11a363
K11a363
K11a365
K11a365