© | Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots:
K11a34
K11a34
K11a36
K11a36
K11a35
Knotscape
This page is passe. Go here instead!

   The Knot K11a35

Visit K11a35's page at Knotilus!

Acknowledgement

K11a35 as Morse Link
DrawMorseLink

PD Presentation: X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X18,12,19,11 X22,13,1,14 X6,15,7,16 X20,18,21,17 X12,20,13,19 X10,21,11,22

Gauss Code: {1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -9, 11, -7}

DT (Dowker-Thistlethwaite) Code: 4 8 14 2 16 18 22 6 20 12 10

Alexander Polynomial: t-4 - 5t-3 + 14t-2 - 25t-1 + 31 - 25t + 14t2 - 5t3 + t4

Conway Polynomial: 1 + 2z2 + 4z4 + 3z6 + z8

Other knots with the same Alexander/Conway Polynomial: {K11a316, ...}

Determinant and Signature: {121, 0}

Jones Polynomial: - q-5 + 3q-4 - 7q-3 + 12q-2 - 16q-1 + 20 - 19q + 17q2 - 13q3 + 8q4 - 4q5 + q6

Other knots (up to mirrors) with the same Jones Polynomial: {K11a36, K11a316, ...}

A2 (sl(3)) Invariant: - q-14 + q-12 - 3q-10 + q-8 + q-6 - 2q-4 + 6q-2 - 1 + 4q2 - 2q6 + 2q8 - 4q10 + q12 - q16 + q18

HOMFLY-PT Polynomial: a-4 + 2a-4z2 + a-4z4 - 5a-2 - 11a-2z2 - 8a-2z4 - 2a-2z6 + 8 + 17z2 + 15z4 + 6z6 + z8 - 3a2 - 6a2z2 - 4a2z4 - a2z6

Kauffman Polynomial: a-6z2 - 2a-6z4 + a-6z6 - 2a-5z + 7a-5z3 - 10a-5z5 + 4a-5z7 + a-4 - 2a-4z2 + 6a-4z4 - 13a-4z6 + 6a-4z8 - 8a-3z + 26a-3z3 - 26a-3z5 + 2a-3z7 + 4a-3z9 + 5a-2 - 19a-2z2 + 39a-2z4 - 41a-2z6 + 14a-2z8 + a-2z10 - 11a-1z + 31a-1z3 - 22a-1z5 - 5a-1z7 + 8a-1z9 + 8 - 27z2 + 46z4 - 39z6 + 14z8 + z10 - 7az + 17az3 - 14az5 + 2az7 + 4az9 + 3a2 - 9a2z2 + 10a2z4 - 9a2z6 + 6a2z8 - a3z + 3a3z3 - 7a3z5 + 5a3z7 + 2a4z2 - 5a4z4 + 3a4z6 + a5z - 2a5z3 + a5z5

V2 and V3, the type 2 and 3 Vassiliev invariants: {2, -1}

Khovanov Homology:
(The squares with yellow highlighting are those on the "critical diagonals", where j-2r=s+1 or j-2r=s+1, where s=0 is the signature of 1135. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.)
  
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 13           1
j = 11          3 
j = 9         51 
j = 7        83  
j = 5       95   
j = 3      108    
j = 1     109     
j = -1    711      
j = -3   59       
j = -5  27        
j = -7 15         
j = -9 2          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Show[DrawMorseLink[Knot[11, Alternating, 35]]]
Out[2]=   
 -Graphics- 
In[3]:=
PD[Knot[11, Alternating, 35]]
Out[3]=   
PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7], 
 
>   X[16, 9, 17, 10], X[18, 12, 19, 11], X[22, 13, 1, 14], X[6, 15, 7, 16], 
 
>   X[20, 18, 21, 17], X[12, 20, 13, 19], X[10, 21, 11, 22]]
In[4]:=
GaussCode[Knot[11, Alternating, 35]]
Out[4]=   
GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, 
 
>   -9, 11, -7]
In[5]:=
DTCode[Knot[11, Alternating, 35]]
Out[5]=   
DTCode[4, 8, 14, 2, 16, 18, 22, 6, 20, 12, 10]
In[6]:=
alex = Alexander[Knot[11, Alternating, 35]][t]
Out[6]=   
      -4   5    14   25              2      3    4
31 + t   - -- + -- - -- - 25 t + 14 t  - 5 t  + t
            3    2   t
           t    t
In[7]:=
Conway[Knot[11, Alternating, 35]][z]
Out[7]=   
       2      4      6    8
1 + 2 z  + 4 z  + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{Knot[11, Alternating, 35], Knot[11, Alternating, 316]}
In[9]:=
{KnotDet[Knot[11, Alternating, 35]], KnotSignature[Knot[11, Alternating, 35]]}
Out[9]=   
{121, 0}
In[10]:=
J=Jones[Knot[11, Alternating, 35]][q]
Out[10]=   
      -5   3    7    12   16              2       3      4      5    6
20 - q   + -- - -- + -- - -- - 19 q + 17 q  - 13 q  + 8 q  - 4 q  + q
            4    3    2   q
           q    q    q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{Knot[11, Alternating, 35], Knot[11, Alternating, 36], 
 
>   Knot[11, Alternating, 316]}
In[12]:=
A2Invariant[Knot[11, Alternating, 35]][q]
Out[12]=   
      -14    -12    3     -8    -6   2    6       2      6      8      10
-1 - q    + q    - --- + q   + q   - -- + -- + 4 q  - 2 q  + 2 q  - 4 q   + 
                    10                4    2
                   q                 q    q
 
     12    16    18
>   q   - q   + q
In[13]:=
HOMFLYPT[Knot[11, Alternating, 35]][a, z]
Out[13]=   
                                 2       2                      4      4
     -4   5       2       2   2 z    11 z       2  2       4   z    8 z
8 + a   - -- - 3 a  + 17 z  + ---- - ----- - 6 a  z  + 15 z  + -- - ---- - 
           2                    4      2                        4     2
          a                    a      a                        a     a
 
                        6
       2  4      6   2 z     2  6    8
>   4 a  z  + 6 z  - ---- - a  z  + z
                       2
                      a
In[14]:=
Kauffman[Knot[11, Alternating, 35]][a, z]
Out[14]=   
                                                                        2
     -4   5       2   2 z   8 z   11 z            3      5         2   z
8 + a   + -- + 3 a  - --- - --- - ---- - 7 a z - a  z + a  z - 27 z  + -- - 
           2           5     3     a                                    6
          a           a     a                                          a
 
       2       2                          3       3       3
    2 z    19 z       2  2      4  2   7 z    26 z    31 z          3
>   ---- - ----- - 9 a  z  + 2 a  z  + ---- + ----- + ----- + 17 a z  + 
      4      2                           5      3       a
     a      a                           a      a
 
                                   4      4       4
       3  3      5  3       4   2 z    6 z    39 z        2  4      4  4
>   3 a  z  - 2 a  z  + 46 z  - ---- + ---- + ----- + 10 a  z  - 5 a  z  - 
                                  6      4      2
                                 a      a      a
 
        5       5       5                                        6       6
    10 z    26 z    22 z          5      3  5    5  5       6   z    13 z
>   ----- - ----- - ----- - 14 a z  - 7 a  z  + a  z  - 39 z  + -- - ----- - 
      5       3       a                                          6     4
     a       a                                                  a     a
 
        6                          7      7      7
    41 z       2  6      4  6   4 z    2 z    5 z         7      3  7       8
>   ----- - 9 a  z  + 3 a  z  + ---- + ---- - ---- + 2 a z  + 5 a  z  + 14 z  + 
      2                           5      3     a
     a                           a      a
 
       8       8                9      9                   10
    6 z    14 z       2  8   4 z    8 z         9    10   z
>   ---- + ----- + 6 a  z  + ---- + ---- + 4 a z  + z   + ---
      4      2                 3     a                     2
     a      a                 a                           a
In[15]:=
{Vassiliev[2][Knot[11, Alternating, 35]], Vassiliev[3][Knot[11, Alternating, 35]]}
Out[15]=   
{2, -1}
In[16]:=
Kh[Knot[11, Alternating, 35]][q, t]
Out[16]=   
11            1        2       1       5       2       7       5      9
-- + 10 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ---- + 
q            11  5    9  4    7  4    7  3    5  3    5  2    3  2    3
            q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     7                3        3  2      5  2      5  3      7  3      7  4
>   --- + 9 q t + 10 q  t + 8 q  t  + 9 q  t  + 5 q  t  + 8 q  t  + 3 q  t  + 
    q t
 
       9  4    9  5      11  5    13  6
>   5 q  t  + q  t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: 11 Crossing Knots: The Knot K11a35
K11a34
K11a34
K11a36
K11a36